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Abstract

We describe the status of a new time-dependent simulatjpabdlity for dense plasmas. The backbone of this multi-
institutional éfort—the Cimarron Project—is the massively parallel molacdynamics (MD) code “ddcMD,” devel-
oped at Lawrence Livermore National Laboratory. The pitt§docus is material conditions such as exist in inertial
confinement fusion experiments, and in many stellar intsritiigh temperatures, high densities, significant elec-
tromagnetic fields, mixtures of high- and Iavelements, and non-Maxwellian particle distributions. @ftgular
importance is our ability to incorporate into this classigdD code key atomic, radiative, and nuclear processes, so
that their interactingffects under non-ideal plasma conditions can be investigdteid paper summarizes progress
in computational methodology, discusses strengths an#tivesaes of quantum statistical potentials isotive in-
teractions for MD, explains the model used for quantum es/possibly occurring in a collision, describes two new
experimental forts that play a central role in our validation work, higlhlig some significant results obtained to date,
outlines concepts now being explored to deal mdiieiently with the very disparate dynamical timescales thisea

in fusion plasmas, and provides a careful comparison of yumawTects on electron trajectories predicted by more
elaborate dynamical methods.

Keywords: Molecular dynamics methods, Inertial confinement fusioimgiic theory
PACS: 52.65.Yy,52.65.-y,52.27.Gr,05.20.Dd,52.25.Dg,5257.

1. Introduction and overview processes in high energy density matter can be found
in recent proceedings of the conference series “Strongly
Coupled Coulomb Systems” and “Radiative Properties
of Hot, Dense Matter,” as well as the monograph “The

Physics of Inertial Fusion” [1].

Hot dense radiative (HDR) plasmas common to iner-
tial confinement fusion (ICF) and stellar interiors have
high temperature (a few hundred eV to tens of keV),
high density (a few to hundreds ofog) and high pres- To be more specific, developing an understanding of
sure (hundreds of megabars to thousands of gigabars) HDR plasmas means understanding the physics of high-
In addition to the extreme conditions defining HDR Z ions in various states of ionization, with light ions
plasmas, the fact that they can be composed ofZow- undergoing thermonuclear reactions; electrons in var-
(p, D, T, HE, ...) and highZ ions (C, Kr, Xe, Au, ...) ious degrees of degeneracy; non-thermal charged par-
means there is a complex interplay of atomic, radiative ticles depositing energy and momentum; and photons
and thermonuclear processes that need to be accountedndergoing scattering, absorption and emission. This is
for. Some HDR regimes relevant to this work are lo- the challenge confronting those who develop radiation-
cated in the temperature-density plot, Fig. 1. Informa- hydrodynamic codes for astrophysical and ICF applica-
tion that elaborates various properties of and physical tions, their goal being a robust and accurate tool that
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This paper reviews the Cimarron project, which is us-

i ICF 4 ing the massively-parallel MD code ddcMD to inves-

tigate numerous time-dependent phenomena in multi-
species HDR plasmas. Why MD? The HDR plasmas of
interest are highly collisional. While both PIC and MD
can be used [4], MD includes Coulomb collisions natu-
rally whereas PIC has to include some sort of collisional
model to account for short-range collisions. Thus, MD
provides greater accuracy anfiigiency for strong col-
lisions. Coulomb forces in ddcMD code are computed
using the particle-particle-particle-mesh method (PPPM
or PPM) [3]. In this method long-range force terms are
calculated with a particle-mesh (PM) technique (simi-
lar to PIC) while short-range force terms are calculated
with explicit particle-particle (PP) interactions. The
strength of MD is also its biggest challenge: time scales
are dominated by the short intervals between electron-
electron collisions. (New hybrid approaches for tack-
log1ope ling this problem will be discussed at the end of this
paper.) MD is also limited by the number of particles
Figure 1: The various domains of non-degenexatelegenerate mat-  in @ computational box and hence for HDR plasmas it
ter, and wealvs. strong plasma coupling je, T space are compared s restricted to rather small length scales. Limitations
with the prevalent conditions in ICF, LCLS and JLF plasmah- A 5qide given accurate pair potentials ddcMD provides an
scissa: electron densipg in electrongcm®; ordinate: temperatur® . . .
inev. accurate numerical solution to the many-body classical
particle dynamics. Key computational features of this
code are summarized in 8§2.
can be used to design experiments, analyze data and ex- By far, most MD codes do not explicitly treat elec-
plain observations. Due to the complexity of HDR plas- trons and applying MD to a plasma requires much more
mas and the shortage of validating data in the regimes thought than simply including the electrons as addtional
of interest, computational physicists resort to the best classical particles in the simulation. Actual electron-
available theoretical models based on kinetic theory of electron and electron-proton collisions involve quantum
energy exchange, EOS, transporti@oéents and stop-  interference and diraction dfects at small distances.
ping power. The theories often depend on ad-hoc cut- At the same time, there is a large-distance collective ef-
offs, ignore strong scattering or bound states, and arefect which manifests itself as Debye screening. This
vague about treating multiple species. In particular, itis dual-scale phenomenon is exhibited in the Coulomb
not obvious how to treat plasma mixtures where, for ex- logarithm [5] as the ratio of the Debye length to the
ample, the lowZ component might be weakly coupled thermal de Broglie wavelength. To characterize these
but the highZ component, strongly coupled. effective interaction features, quantum statistical poten-
Recent advances in high performance computing tials (QSPs) [6] modify the Coulomb potential at short
have opened another avenue to a deeper understandrange with quantumféects while leaving the long-range
ing of HDR plasmas and at the same time provided in- behavior intact. Although QSPs have been used with
sight into the accuracy of kinetic theory. Particle-In- great success, they are, by necessity, only approxima-
Cell (PIC) [2, 3] and Molecular Dynamics (MD) [3] tions for the quantum dynamics of real electrons and it is
methods have provided the capability of creating vir- not known quantitatively how well they reproduce pro-
tual non-equilibrium plasmas, whose properties can be cesses relying on aspects of quantum dynamics. QSPs
investigated and diagnosed in ways analogous to thoseare discussed in detail in §3.
an experimentalist uses to study a plasma in a labora- The use of simulations to understand the micro-
tory. The virtual plasma method also provides insight physics of HDR plasmas raises the question of how
into the micro-physical foundations of widely accepted one validates and tests MD. Our strategy here is two-
theories. And, since strong coupling is not an ispere pronged: (1) make comparisons with other theoreti-
se, it provides insight into plasma regimes where current cajcomputational results in regimes of moderate den-
kinetic theory is not valid. sity and Coulomb coupling strength; (2) make compar-
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isons with experiments that probe regimes where our Finally, in 89 we discuss future developments un-

code should be valid. Even though these comparisonsderlying the physics capability of the MD code. One

are being made in regimes not necessarily of highest in- thrust is moving beyond QSPs and thereby improving

terest from an HDR plasma point of view, they provide the micro-physics of the electron-ion interaction. The

confidence in our simulation capability when careful ex- other closely related thrust is enhancing the ability of

trapolations to HDR plasma conditions are undertaken. the MD code to simulate numerous, tightly coupled
Now, in practice, the former kind of comparisons physical processes, especially those in HDR plasmas

noted above tend to focus on fully ionized plasmas, and undergoing thermonuclear burn.

the latter, on partially ionized plasmas. Thus, in addi-

tion to fusion and free-free radiation events in burning

plasmas, MD simulations of plasmas must also be able 2. Computational methods

to include the atomic kinetics of ionization and recombi-

nation for ions of heated target materials. Section 4 de- 2.1. Molecular Dynamics methods

scribes the model we use to handle quantum processes  \js|ecular dynamics (MD) is a discrete particle sim-

in a (classical) MD simulation that incorporates QSPS. 1ation method developed in the 1950’s by Alder and

For certain test cases mentioned there, this approach iS\Nainwright [7]. Though the name suggests and it cer-

still problematic. . tainly has been used to study molecular systems the
85 presents a representative set of results for fully ethod has a much broader application: it has been used

ionize(_JI plasmas. These illyminate important featu_res to study atomic systems, macro particles and even nu-
of static (mean) and dynamic correlations, electron-ion ¢jeay systems with explicit hadrons. The focus of this
energy exchange and stopping power under HDR €ON- paner is how MD is used to simulate hot plasmas in

ditions. . . . which all the ions and electrons are treated as explicit
The two experimental feorts within the Cimarron particles.

project are described in 86, together with the current = 1o molecular dynamics method is simply the nu-
state of our related validation work. Brl_efly, (1) eXperl-  merical integration of equations of motion of a set of
ments have been performed at the Jupiter Laser Facility particles that are interacting via some potential energy

(JLF) of proton stopping in heated, well-characterized fnctionv. Typically the equations of motion are the
carbon targets. (2) Experiments are also being per- |assical Newton’s equation

formed at the Linac Coherent Light Source (LCLS).

The goal is to heat solid density matter volumetrically i f

and isochorically using the ultra-short pulse 2 keV ra- e T m fi=-ViV, 1)
diation beam. The LCLS pulse is also used to measure

the plasma’s dynamic structure fac®(k, w). andV is a function only of the particle positions. That

Given the significant capabilities of molecular dy- is,V = V(rs,...,rn). However generalizations to both
namics for analyzing non-equilibrium behavior of HDR  the equations of motion and potentials to include rela-
plasmas, improvements in our MD approach continue to tivistic, quantum and momentum dependeffi¢ets can
be made. In 87, we look to the future and discuss other all be explored.
methodologies that can be melded with MD to augment ~ The strength of the MD method is once the poten-
its core capabilities. Under consideration are wave- tial energy functiorV and the equation of motions have
packet MD, momentum-dependent QSPs, and kinetic- be chosen the evolution of the system is completely de-
theory MD (wherein electrons are treated via a quantum fined. This evolution can be tracked at the smallest rele-
kinetic equation while the ions are still treated by clas- vant time and length scales and all particle correlations
sical MD). And, we are exploring the use of density- are preserved and measurable. One might say that a vir-
functional theory for situations that do not require ex- tual laboratory has been created where all the finest time
plicit treatment of electron dynamics. and length scales can be observed.

In 88, we return to QSPs, and investigate strin-  The errors associated with MD are three-fold: poten-
gent tests using exact solutions of the time dependenttial energy model, sampling and integration. The sim-
Schrodinger equation for electron-ion scattering. These plest of these errors to understand and control is the
studies reveal an important issue with QSPs that has re-integration error. This error is associated with the nu-
ceived little attention in the literature to date—we must merical integration scheme and controlled by the size
be cautious in the manner in which we interpret what of the time steph, used. For instance consider one of
the potentials yield. the most common numerical integration methods, the



velocity-Verlet algorithm [8]; complex many body atomic model potentials sometimes
fail to capture all the needed physics and quantum me-

ri(t+h) = rit) + vi()h + :_ZlihZ +O(h®) chanical methods must be used to evaluate the potential
m energy.
1i(r(t) + fi(r(t+ h) 3
i(t+h) =vit) + = h+ O(h . o
vitt+ ) =vi(® + 2 m +0(m) 2.2. Domain decompositionin ddcMD
(2) In parallel MD codes it is necessary to divide the sim-

) 3 ulation volume into domains each of which is assigned

_ Tholugh a relatively low orderﬁmethod)r(]h ) veI?c- to a computer core (i.e., an MPI task). Because particles
ity Verlet preserves (up to ro,un (Err(_)r) the symplec-  hoar domain boundaries interact with particles in nearby
tic [9] symmetry of Hamilton's equation (the equations 45 ains - internode communication is required to ex-
of motions). One property of symplec-nc mtegrgtors_, change particle data between domains. The surface-to-
and thg reason we cho_se to use velogty Verlet n this \/0lume ratio of the domains and the choice of potential
work, 1S th‘f"t the_Ion_g-tlme energy drift fo_r a MICIO- st the balance of communication to computation.
canonical simulation is very small. Often, it is desirable The domain-decomposition strategy in ddcMD al-

to control pther average quantities besides the total en-1ows arbitrarily shaped domains that may even overlap
ergy. For mstal;]ce(zj tempeéjrature or pressure [d10]. Thzrespatially. Also, remote particle communication between

are many methods (An ersen [11], Berendsen [12], nonadjacent domains is supported whenever the inter-
Nose-Hoover [13], Langevin [14]) to control tempera- action length exceeds the domain size. A domain is

ture_ln an MD simulation. _Temperature control is of defined only by the position of its center and the col-
particular importance for this work and we have chosen |otion of particles that it “owns.” Particles are ini-

to use the Langevin method. The Langevin method is @ i,y assigned to the closest domain center, creating a

stochgst_m metho‘?‘ wherg_the equatl.on of motion for the set of domains that approximates a Voronoi tessellation.
velocity in Eq. (2) is modified by adding a small random The choice of the domain centers controls the shape of

(Wh'_te) noise and a frictional force directly proportional s tessellation and hence the surface-to-volume ratio
tovi: for each domain. The commonly used rectilinear do-

@ = fi - mi + ,6mT g(t) 3) main decomposition employed by many parallel codes
dt? T T is not optimal from this perspective. A better surface-

whereg(t) is a three-vector of independentrandom vari- to-volume ratio in a homogeneous system is achieved if
ables of unit variances. This particular choice of noise domain centers form a bcc, fcc, or hep lattice, which are
and friction term ensure that the fluctuation-dissipation common high-density packing of atomic crystals.
theorem is obeyed, thereby guaranteeiNyT” statis- In addition to setting the communication cost, the do-
tics. The time constantis somewhat arbitrary, and is main decomposition can also control load imbalance.
adjusted to provide a suitable rate of thermal equilibra- Because the domain centers in ddcMD are not required
tion in the simulation. to form a lattice, simulations with a non-uniform spa-
The sampling error is associated with the number of tial distribution of particles such as occurs with high-
time steps that are completed and hence the total phys-impurities can be load balanced by an appropriate non-
ical time simulated. Normally MD is used to explore uniform arrangement of domain centers. The flexible
typical properties of a system. The longer the simu- domain strategy of ddcMD allows for the migration of
lation time the greater number of states explored and the computational work between domains by shifting
hence better sampling. Though in principle this error the domain centers. As any change in domain center
is controllable by increasing the simulation time, many positions &ects both load balance and the ratio of com-
systems can have very long time processes and it may beputation to communication, shifting domain centers is a
very computationally demanding to sampléfsiently. convenient way to optimize the overatfieiency of the
Perhaps the greatest challenge for reliable MD sim- simulation. Given an appropriate metric (such as overall
ulations is to develop high quality potential energy time spent in MPI barriers) the domains can be shifted
models. The models may be simple pair potentials on-the-fly in order to maximizefgciency.
such as Lennard-Jones [15] and pure Coulomb or com-
plex many body models such as MGPT [16] or bond- 2.3. Dealing with Coulomb interactions
order [17-19]. Computational intensity may vary from When selecting the potential energy function to de-
thousands to millions of floating point operations per scribe a plasma it is tempting to simply treat the elec-
particle per time step. Unfortunately, even the most trons and ions as bare Coulomb particles; unfortunately,
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this is ill-advised on several grounds. From a prac- the Coulomb potential energy can be written as
tical point of view, one is faced with the “Coulomb

Catastrophe Problem” in which electrons will eventu- 19 aigjerfearij/ V2)

ally recombine into classical bound states that are in- v 5 Z Z {f

finitely deep. Not only does this provide an arbitrarily = ]

| t of , the time st t be arbitraril i(Np;(r’ N
arge amount of energy, the time step must be arbitrarily +ffp.(r)p,(r )dr dr’}— j—quz
i=1

i=1

(%)

small to resolve the motion of an electron that is deep in Ir—r|
the attractive Coulomb well. Other issues arise from a

physics perspective. We know that density fluctuations The first term in this expression is short-ranged so it can
are suppressed at wavelengths shorter than the thermahe cut df at finite r and calculated irO(N) time us-

de Broglie wavelength, which depends ugorThis af-  jng standard MD techniques for short-ranged potentials
fects the static and dynamic structure factors discussedsych as neighbor lists or link cells. The QSP corrections
in 85.1 and 85.3. Also, for some applications of inter- can be easily incorporated into this term. The second
est, such as warm dense matter (including fast ignition) term contains the long-range character of the interac-
experiments, the electrons can be partially degeneratetjon and gives rise to a smooth charge distribuign
Finally, the electrons also display importanfitictive  that can be solvediciently in Fourier space. To en-
effects, which modify the screening properties and, in aple the use of fast Fourier transforms (FFTs) we assign
the extreme, even the proper formation of bound states. the charge density onto an appropriate mesh, with the

To account for all of these issues, the workhorse Mesh spacing. The third term is the usually referred to
method has been the use of Quantum Statistical Poten-as the self energy. Boundary conditions at infinity can
tials (QSPs). The use of QSPs was pioneered by Hanserlead to additional terms which vanish in our application.
and co-workers, who investigated a variety of equilib- With appropriate choices made for the short range radial
rium and non-equilibrium plasma properties [20-24]. Cut-of (rc e @) and the resolution of the mesh used
Because the validity of QSPs impacts the believabil- t0 solve the long range part, the PPPM method success-
ity of any MD simulation that incorporates them, the fully reduces the overall scaling of the algorithm from
physics underlying QSPs is discussed in some detail O(N?) to O(NlogN).
in 83. Also discussed there is the important point that
QSPs are rigorously derived only for equilibrium plas- 2.4. Scaling PPPM to large N systems
mas; hence, their applicability to non-equilibrium situa-

tions requires careful consideration. When applied to systems with a large number of

particles on massively parallel computers, the respec-
Because QSPs modify the Coulomb potential only at tive scalability of the short- and long-range force terms
short range (and only for the electrons) we are forced is very diferent. For the long-range terms the global
to confront the conditional convergence issues associ- communication typically needed to compute three-
ated with a potential that behaves gs &t long range.  dimensional FFTs poses a significant scaling challenge.
Fortunately, a variety of well-known, accurate and ef- To overcome this problem we have developed a hetero-
ficient methods for calculating long-range electrostatic geneous decomposition strategy in which the available
forces exists: Ewald summation, fast multipole meth- processes are divided into two subsets. One subset com-
ods [25], and real-space multigrid methods [26, 27] to putes the short-range explicit pair forces, the other han-
name a few. Here we limit the discussion to Ewald dles the terms involving FFTs. A detailed description of
type methods, in particular the verffieient PPPM ap-  this method is available inRef. [29]. These two subsets
proach [3, 28]. do not need to contain the same number of processors.

The idea behind an Ewald-type approach is to split In particular, the size of the FFT subset can be chosen
the Coulomb interaction into a short-range term and t© P€ & small fraction (typically 5-10%) of the available

a smooth long-range term. This can be accomplished €S- This greatly redupes scalabiility dgmands placed
by adding and subtracting to each charged particle aupon_the FFTs. In practice the relative sizes of the _su_b—
screening charge distribution centered at the particle lo- S€tS IS @ run-time parameter that can be used to optimize

cation. For example if Gaussian screening charges arelh€ time-to-solution for a given problem.
used To investigate weak scaling behavior we performed a

series of runs using 232 to 278,528 tasks and approxi-
mately 9400 particles per task. In each run we set the
pi(r) = gi(a?/n)¥? expla(r —ri)?), (4) number of mesh tasks to approximately 6% of the total



number of tasks. We found that the valuexahat min- interest in this study, determination of an accurate form
imized run time (for constants) is a function of the of this second term is straightforward.
number of tasks. For 232 tasks a minimum was found In general, we cannot solve Eq. (6) exactly forNn
ata = 2.4 and for 278,528¢ = 2.063. We have not  body system. An approximation that is commonly used
optimized run time for each point in the weak scaling in path integral Monte Carlo is to factorize the Hamil-
study, but rather have interpolatedrom the smallest  tonian to obtain a product of terms that can be calcu-
to the largest simulation. lated exactly [32]. At very high temperature, this type
Efficiency at full scale has fallerfioby roughly 15% of factorization of the density matrix becomes very ac-
compared to perfect scaling. This is a considerable ac- curate. AsT — oo, 8 — 0, hence the partition function
complishment considering that the number of tasks is can be written as a product of the kinetic and potential
nearly 300,000 while other PPPM implementations typ- terms [33], i o
ically experience 30% fall b at task counts of 10,000— et ~ ePRehV, (9)
30,000 [30]. Hence, our heterogeneous decomposition

where the kinetic term contains contributions from all
strategy has extended the weak scaling range by a factor

par'ucles in theN-body system,

of nearly 10.
N
hZ
- . =-> (10)
3. Quantum statistical potentials =
3.1. Basic concepts andV is the total interaction. The kinetic term can thus

Statistical potentials have been used in studies of be written as a product df free-particle kinetic terms,
plasmas for many years, and details of their derivation the form of which is exactly known [32]. Since the
can be found in Jones and Murillo [6] as well as refer- interaction potentials relevant to the systems we study
ences cited therein. Here, we review their derivation here are written in terms of sums over pair interactions,
starting from the quantum partition function at finite an accurate form of the interaction potential term in the
temperatureT = 1/ in energy units. In this case, a density matrix is obtained by writing the potential term
quantum system is described by the finite-temperature as a product of the pair density matrices for each pair of
density matrix [31]. In the basis of the particle posi- particles. The density matrix thus takes the form
tions,{R}, the density matrix can be written as N s

. pz(rlj, ij :B)
PRR:P) = ) W(RIEPW(R),  (6) gpF“" gl
S

R,R":p) ~
A A pe(rij, 1 ,]aﬁ)

i<j
(11)

where¥s andEs are the eigenfunctions and eigenvalues Where

of the full system Hamiltonian. The partition function

of the quantum system is the trace of the density matrix:  pr(ri,r{; ) = (

2npr?\"%? miri =l
| o] @@
Q= Tr(e—ﬁ'q) = dep(R, R; ). (7) is the free particle density matrix and
p2A(rijs ri’j;,B)/pF(rij, ri’j;,B) is the non-ideal part of
the pair density matrix for each pair of particigsthis,
we discuss below. This approximation results in errors
of orderg®, which is quite small at the temperatures in

A semiclassical equation for thé-body system is ob-
tained by multiplying the partition function by a partic-
ular form of unity [6],

this study [32].
B ) Returning to Eq. (8) and having obtained an accurate
Q= C dep(R’ Rif) expression fop(R, R’; B), an appropriate expression for
dNp _dMp s en [ o(R,R;f) (8) C must be defi_ned. At very high temperatures, the quan-
(Zﬂ_h)gNN| R tum and classical momenta are equal, hence we define

C = [Tipr(ri,r{;B). Then the final expression for the
This expression shows that if an appropriate form of the partition function becomes
second factor of Eq. (8) can be defined, thentum

partition function of Eq. (7) can be sampled through Q = *p O P o5 /ZmIan pa(rij: Tij; )
classical MD. The termp(R, R; 8)/C is analogous to the (27Th)3NN | eI A)
interaction term in classical MD. At the temperatures of (13)
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It follows that we can define theffective, tempera-
ture dependent statistical Coulomb potential for a pair
particlesU(ri;, 5), from the second factor in Eq. (13),

p2(rijs rij; B)
Pe(rij. i B)
In order to calculate this quantity, one must calculate tl
diagonal elements of the pair density matrix. The dia

onal part ofor(rij, rij; 8) is a constant(Znﬂﬁz/pij)_S/z,
where y;j is the reduced mass for the pair of parti
cles. For a two-body (pair) problem, such as electro
electron, nucleus-electron, or nucleus-nucleus scatt
ing, the Schrodinger equation can be solved exactly
that all {¥s} and{Es} are known, ang(rij, ri’j;,B) can
be computed exactly from Eq. (6). The only numer
cal difficulty comes from the fact that at very high tem
peratures the number of states that must be included
in the sum becomes prohibitively large. For Coulomb
systems, an fécient method for calculating the pair
density matrix was developed by Pollock [34]. We
use both the Pollock method and the matrix squaring
method [32, 35, 36] to compute the exact pair densities
used in this study.

UC(r.B) = —}3 log

} . (14)

U(rij. 8)

In order to make the derived statistical potentials
amenable to use in our classical MD code, we then fit
the potentials to an analytical form previously derived
by Kelbg [37] and improved by Filinoet al. [38],
S \2

9, )

Fij

A (1— erf[yi»m )} . (15)

Aijyij L ij
Here 4;; andy;; are treated as temperature dependent
fitting parameters. For the high temperature hydrogen
studies presented herg,; = 1 andJ;; is the thermal
de Broglie wavelengthdi"’j Z‘i’i A comparison of
the computed statistical potentials and their fits for an
electron-proton pair is shown in Fig. 2.
3.2. Pauli Potential
Next, we consider various formulations of the Pauli

potential. The Pauli potential was, in fact, the first QSP
to be developed. Shortly after the development of quan-
tum mechanics, Uhlenbeck and Gropper [39] sought a
method by which one could use the equation of state
to distinguish Bose and Fermi gases. In doing so, they
noted that the usual classical potential used in the parti-
tion function should be replaced by

Uee(r) US() =7 In (1= exp(-r?/Adg))
U&(r) + Uus(r). (16)

Energy, keV

Electron-proton pair potential

T

T T T

- Effective potential
— — Fitted improved Kelb
— Coulomb H

-1.25

Rt Lol

ERRE|
0.01

0.1
LN

ol

0.001

Lo

%001

10

Figure 2: Comparison offkective potentials for an electron-proton
pair calculated from Eq. (14) (red) using the matrix squarimethod.
The fitted potential from Eq. (15) is shown as black dashestliThe
dashed blue curve is the Coulomb potential. THeative potential
is shown for eight dterent temperatures (from top to bottor: =
86 eV, 172 eV, 345 eV, 689 eV, 1.4 keV, 2.8 keV, 5.5 keV, 11 keV.)

where the uppgiower sign is for bosonfermions and
Auc = h/VmeT. In what follows, we will only
consider fermions. This result can be readily ob-
tained exactly from the pair density matrix for two
non-interacting plane waves with the appropriate sym-
metrization of the two-particle wavefunction. Because
this result is obtained for two particles, it represents a
low density approximation [6]; note that Eq. (16) does
not have an explicit density dependence. Lado showed
how to extend this result to the spin averaged case [40],
which, for the electronic (spin/2 fermions) case, has
the form
uP(r) = —-BtIn (1 - % exp(—rz/AzH)), (17)

whereAy = 1/ VameT = Ayg/ Vr.

Historically, the forms Egs. (16) and (17) are not the
most common in use. For example, Hansen and co-
workers [20] used the form

up () = 871 In(2) exp( [ In(2)] /A7)

originally suggested by Deutsch,
Gombert [41, 42].

Note that this result diiers from Eq. (16); however,
we see that Eq. (18) has been adjusted sucmﬁ(ﬁ)l) =
ul’(0) and lim_or=duf(r)/dr = lim,_or=dul(r)/dr,
while retaining a form with an analytic Fourier trans-
form, which is useful in integral equations. Hansen
and co-workers also use affdaction potential quoted

(18)

Minoo and



by Deutsch,et al., originally suggested by Dunn and described by deterministic (classical) equations. At

Broyles [43], present our best method to deal with these situations is
Galb a hybrid Monte Carlo (MG@Molecular Dynamics (MD)
Ug() = =—[1-exptr/Ap)] . (19)  scheme, dubbed “Small Ball” (SB).
Quantum or semiclassical cross-sectiogsmay be
Different authors have usedierent definitions of\y used to describe the various processes “x” that are con-

and Ap; our calculations with “Dunn-Broyles” poten-  sidered to occur during a close collision. When the clas-
tials actually use Egs. (18) and (19) with numerical co- sjcal MD brings an electron-ion pair to within a speci-

efficients taken to agree with Hansen [20]. fied, small distanc®g, control is passed to a subroutine
Lado has further extended these forms to dense sys-that forms conditional probabilitieB{x}, given by the

tems [40]. In this formulation, an integral equation must  expression

be solved numerically; this has been done, and a fit has P(x} = Ix (20)
been given [6] for ease of use. However, we must be ”R%

cautious in extending theftliactive and Pauli potentials

to higher order when they are treated separately. In the It is easy to enforce detailed balance on the process
9 y b Y- rates described by this algorithm. Moreover, this algo-

true electronic structure problem, these two aspects of . . T )
) rithm gives a prediction independent of the choice of
guantum mechanics cannot be treated separately. Re-

cently, an approach has been developed [44] that Iargelythe S”I"f‘"'ba" radiugs, at I_ea_lst over a restnc’Fed range
: : of radii: Insofar as the arriving particle flux is simply
overcomes this shortcoming.

multiplied by the projected area of the small sphere, the

3.3. Limitations of Quantum Statistical Potentials radlugRB ca.ncels out of the event rat_e. But, if too large
a radiusRg is chosen, the sphere will frequently con-

Despite the fa_ct that the_QSPs appear as corre_zctlonstain more than one target, making it necessary to devise
to the real, physical potential, as in Eq. (16), their use some scheme to handle multi-center collision events.

in dynamical applications is questionable. It has beer_1 On the other hand, if too small a radius is chosen, the
generally argued that one should not refer to the_se addl'enhancement of flux at the sphere’s surface, as repre-
tional terms as pot_entla_ls (or forces) [45], a point that sented by the pair distributiogs(Rs) > 1, will be in-

has peen empha_5|zed in the context of dense plasmacorrect. (Pair distributions are defined and discussed in
physics [6]. We find three mpo_rtant Wgaknesses with 85.1.) This is because the QSPs and, hence, the pair dis-
the QSP approach:_ (;L) pgrtple Interactions are treat,edtributions arising in the MD simulation have no knowl-
on average, not distinguishing slow from fast parti- edge of extended charge distributions about nuclei that

clhes; (2) t_her?uaﬂtum n}oglflcanm}s do_notdaC(_:ount folr are produced by their bound electron(s). Given these
changes in the s ape o t € wave unc_tlon uring a €ol- ¢4 nstraints, we believe that the inequalities
lision; and (3) Pauli blocking does not involve momen-

tum eigenstates; rather, it appears as a separation in co- 0.58 < Rg < 0.83; , (21)
ordinate space. For these reasons, we have explored
several alternatives to the QSPs that are closer to the truewherea; = (3/47p;)Y? is the Wigner-Seitz (ion-sphere)
dynamical solution that we seek. These methods, which radius, bracket reliable choices of the SB radius for
include momentum-dependent potentials, wavepacketatomic processes.
molecular dynamics, and kinetic-theory molecular dy-  The Small Ball method was first employed to cal-
namics, are described in 87; some informative electron culate radiation generation in hot dense plasmas [46—
trajectory comparisons are presented in 88 to quantify 48]. Here, Kramers’ semiclassical cross-sectiqnis
the first two weaknesses noted above. used to calculate radiation emission and absorption pro-
cesses. MC tests decide the photon enéxgyand de-
cide between absorption and emission, guided by condi-
tional probabilities obtained from the cross-section. The
MD code predicts a radiation spectrum that relaxes to
Classical molecular dynamics faceghdiulty when the expected black-body distribution. Work in progress
it is necessary to consider quantum processes suchresolves bremsstrahlung emission (absorption) into in-
as emissiofabsorption of X-ray photons, thermonu- dividual angular momentum contributions.
clear fusion or atomic ionizatigrecombination. At In order to provide a consistent treatment of all the
least when expressed in classical language, such quanvarious processes that can occur in a given electron-
tum events are governed by probabilities and are notion collision, the SB algorithm is being used for non-

8

4. Small Ball description of atomic and nuclear
physics



radiative scattering events, too. Preseffibrés are fo-
cused on the issue of charge-state distributions in dense
partially ionized matter produced by intense X-ray or
proton beams (see discussion of experiments and rel-
evant simulations in 86). To model plasma ioniza-

tion with minimal atomic kinetics, we have adapted the
bottleneck approximation [49], which requires one to ¥

keep track only of ionization and recombination events
to/from a few low-lying states; bound-bound transitions
(radiative or collisional) among these states are ignored,
as are all transitions involving bound states above the
bottleneck. The bottleneck itself is identified as the low-
est state for which the radiative lifetime exceeds the (in-
elastic) collisional lifetime, and in a hydrogenic approx-
imation this state has principal quantum number

( )1/2]1/ 9 | (22)

Atomic processes included, to date, are (1) electron
impact ionization and its inverse, three-body recombi-
nation; (2) X-ray ionization and subsequent Auger tran-
sitions; (3) radiative recombination. We use a scaled
Mott cross section for collisional ionization events [50];
it is reasonably accurate and, importantly, it is an ex-
pression dierential in the energy of the ejected electron
(information needed subsequently by the MD routines).
This same energy information is also required for the
calculation of three- body recombination probabilities.
X-ray ionization is based on atomic subshell photoion-
ization cross sections [51]. Auger events are determined
by an MC step from the Auger lifetimes [52]. And,
for radiative recombination, we use the Milne relation
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Figure 3: Evolution in time of the mean charge stéf¢ in a xenon
plasma as computed with Cretin usindfeient maximum principal
quantum numbers, as described in the text.

ionization stage under these conditions. However, omit-
ting continuum lowering from the series of calculations
produces results which also strongly support the bottle-
neck approximation. For comparison purposes, the dot-
ted curve in Fig. 3 shows the evolution i = 5 in

the absence of continuum lowering. The overall evolu-
tion remains similar to that fammay > 3 with continuum
lowering, but with diferences that could impact spec-
troscopic predictions of some plasma simulations.

Test comparisons with Cretin show that the SB algo-
rithm together with the bottleneck approximation yield
credible results for solid-density plasmas. Figure 4
shows the evolution of a carbon plasma with a density

(detailed balance) to obtain ground state cross sectionsof 2.2 gcm?®, held at a temperature 3t = 50 eV, both

from accurate photoionization formulae. Cross sections
for recombination to excited states (below the bottle-
neck) use hydrogenic formulae.

The bottleneck approximation works particularly

with the atomic kinetics and the MEID code. These
conditions are relevant to LCLS and JLF plasmas de-
scribed in 86. The results in the lower part of Fig. 4
are for an initially singly-ionized plasma which colli-

well for these dense systems. Figure 3 demonstrates thesionally ionizes. The dash-dotted curve shows the re-

efficacy of this concept using Xe at an electron density
of pe = 10?% cm3, conditions appropriate to ICF. The
Xe was initialized with 10 bound electronstat 0. The
evolution of the ionization state at a fixed temperature
of 10 keV was calculated with the atomic kinetics code
Cretin [53], using atomic models incorporating bound
states up to a maximum principal quantum nunrigk.
Varying nmax from 2 to 10 produced only two discrete
evolution tracks — fommax = 2 (solid line) and for
Nmax > 3 (dashed line), in agreement with the estimate
from Eq. (19) ofn* = 2.5. The concordance with the
bottleneck approximation is partially due to continuum
lowering, as only a few bound states exist for any giving

9

sults from the M@MID code, while the solid curve show
atomics kinetics results which include both continuum
lowering and excited states. The dashed curve shows re-
sults from the atomic kinetics code without continuum
lowering. This more closely matches the physics cur-
rently incorporated in the MM®ID code. The agreement
supports the concept of the SB algorithm, while empha-
sizing the importance of incorporating continuum low-
ering into SB. This task is in progress.

The upper portion of Fig. 4 is for a carbon plasma
under the same conditions, which is initially completely
stripped and proceeds to recombine. The solid curve
shows atomic kinetics results including excited states,
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Figure 4: Evolution in time of the mean charge sté in a carbon
plasma as computed with Cretin and with ddcMD. The lower pfrt
the figure is for an ionizing plasma, demonstrating reasienagree-
ment between Cretin @ continuum lowering (dashed curve) and dd-
cMD with the SB algorithm (dotted curve). The solid curveegiv
Cretin results including thefiect of continuum lowering. The upper
part of the figure is for a recombining plasma. Here, ddcMDds n
using SB and the recombination proceeds classically, dogumuch
faster than the atomic kinetics results obtained by ongittiny excited
states (dashed curve). The solid curve shows Cretin resiitsned
including the &ects of excited states.
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while the dashed curve omits excited states. The omis-
sion of excited states is to more closely match the
physics of the MD code, which here does not use the
SB algorithm but evolves classically, with recombina-
tion measured by looking at the residence time of an
electron around the nearest ion. The atomic kinetics
results do include continuum lowering, which in this
case #ects the final charge state but not the recombi-
nation time scale. The comparison highlights a known,
important issue — namely, the tendency of the classi-
cal charged system to exhibit prompt many-body relax-
ation whereby some electrons obtain energies well be-
low that of the actual electron-ion ground state (this hap-
pens in spite of the use of “regularized” QSPs). Because
this relaxation occurs on a timescale shorter than that
characteristic of actual quantum recombinations, work
is underway to develop a prescription that precludes the
counting of spurious “classical recombinations.”

The Small Ball algorithm also is being used to calcu-
late thermonuclear reaction rates for DT plasmas. The
constraints on the small ball radius, comparable with
Eq. 20, are dferent in the nuclear case. The radius
Ry should be chosen so th@y, is large compared with
the (ion) de Broglie wavelength and the classical dis-
tance of closest approach of a DT pair in a head-on col-
lision, and small compared with the ion sphere and De-
bye radii. This ensures that classical physics may safely
be used for > Ry, and that multi-particle feects may
be neglected for < Ry. By virtue of the latter, the
correlationsg; (r) have converged to a constant multi-
ple of expFBUii (r)]. (The difference between the total
correlation functiorh and the direct correlation func-
tion c has attained its — O limiting value.) Within
this range of radii the calculated event rate discussed be-
low is independent of the radius. Practical valueRof
are around 10 cm ~ 1072a, much smaller than for
atomic processes. In a plasma with dhisiently small
I', the quantityh;; (r) — ci-(r) is negligible everywhere,
and the upper limit ofRy becomes moot.

A large-scale ddcMD run was made for a hydro-
gen plasma, and the events in which a proton pair ap-
proached within a distand®y of each other were sim-
ply counted. Five million particles were included, and
for this simulation we useBy = 0.01A. The gas tem-
perature was hot for a fusion plasma before ignition, 5
keV, but the density was a realistic2?@m=. The pro-
ton mass was scaled down by a factor 100 to increase
the event rate. The simulation ran for 0.166 fs. The
number of events counted was 77,115, which agrees
within statistical error with the expected number based
on the HNC pair correlation at = Ry. This event rate
could be turned into a fusion rate by applying the con-



ditional probabilityP{x}, in which oy is taken to be the  of state parameters like pressure, compressibility, and
nuclear reaction cross section. Additional corrections heat capacity would be to take numerical derivatives
are needed in the center-of-mass energy of the pair, andof ®(T, V), but finite diferencing compounds the vari-

in the relation between impact parameter and angular ance from individual simulations. More sophisticated
momentum, owing to the potential energy of repulsion approaches relate thermodynamic parameters to the ex-
atr = Ry, before the SB algorithm can be applied. The pectation of microscopic correlation functions. Pressure

conditional probability is found to be of order 10 ow- is obtained from the virial [3]:
ing to the nuclear radius being much smaller th&an N 1 ,
This emphasizes the fact that it is very challenging to P= Tﬁ - @<Z Fiaip - ri(,jﬁ> (25)
obtainany fusion events unless MD simulations are per- ijp

formed for much longer times than those typically re-

quired for dense plasma studies. whereQ is the volume, and thEi,jz = —Wos(riejs) are

interparticle forces. Heat capacity is derived from fluc-
tuations in internal energy:
5. A sampling of simulation results o (B2 — ()2 _T<52_V
5.1. Pair distribution functions and static equilibrium Vo T? aT2 "
properties Note that evaluating®/dT from Eq. (23) yields an

Molecular dynamics simulations are widely used additional correction from thel-dependence oW.
to compute macroscopic properties from microscopic Isothermal compressibilityr for the binary ionic fluid
models. Linear response theory and the fluctuation dis- is obtained from th& — 0 limit of density fluctuations
sipation theorem can identify the relevant correlation ([21, §10.2],[55, Eq. 2.3.13]):
functions for the desired property [54]. MD simulations a5
for these microscopic quantities then include higher- pPTxT = - lim San(K) ; 27)
order terms in the interaction potential, and so go be- XX (0l = Qp)* k=0
yond analytic perturbation theory. However, they are this expression involves concentratiors = N,/N,
subject to statistical errors, which must be managed in charges,, particle number densityn(k) = 3, po(K)
practice by increasing the system size and computa-and charge densityz(k) = 3, Qoo (K), plus the to-
tional fort. On the other hand, analytic methods are tal number static structure factSiy (k). For diferent
free of this complication and also provide insight and combinations of number and charge,
independent assessment of the numerical results.

For example, the thermodynamic potential for a sys- Sas(K) = Q fdr e "K(5pa(r)ps(0)) , (28)
tem of N particles at temperatui,

(26)

3 Py in_which A andB may beN or Z. Equation (27)_is ob—_
D= <q)> = ENT + <V - Tﬁ> , (23) tained from a more complicated expression involving
Snns Snz and Szz and reduces to this form owing to
charge neutrality [21, Chapt. 10].

The equilibrium properties described below are ob-
tained from ensemble averages of instantaneous correla-
tion functions. Consequently, thermostatted and mass-
scaled simulations are possible, wherein temperature is
V= Zvaﬁ(rmjﬁ). (24) maintained by an externa! bath and the pr(_)ton mass

is reduced from the physical value. Classical coor-
dinate distributions are independent of both modifica-
(Note that there is a correction to the internal energy for tions. Mass-scaling is advantageous because the time
a temperature-dependent potentidN//dT # 0, which required to sample diverse phase space configurations
comes from the derivative of the partition function, is set by the slowest particles, while the simulation time
Q= fe*ﬁH. For simplicity, this term is not evaluated step is limited by the fastest particles. Therefore, the dy-
here.) namics are evaluated here with the proton mass reduced

In some cases, sampling errors can be mitigated by to m,/1000 while the quantum statistical potentials for
substituting diterent statistical mechanical identities for protons and electron¥,, andVep, are calculated using
the same quantities. A direct approach to equation the physical massry,.
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is calculated in terms of (canonical time- or ensemble-
averaged) expectations of potential energidsg,
summed over pairs of particlésand j of speciesr and

B, respectively,

iajB
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Alternatively, the internal energy can be computed 15 ' T ' ' |
from the pair distribution functions and the potentials
[54, §13-3], [20]: i e |

3 Qpapp Nop(r) . Epp
(D_ENT+§ ) fdrgaﬁ(r)[vwﬁ(r)—T 2L i -

(29)
Now, ;a‘ s |

(1) = ——( 351 - Ru(@)o - Ra(w) G0) sl .

aPB Yaip

involves an average over the simulation tirge,In this - .
case the static structure factor is ([55, Eq. 2.3.6]):

Sus9 = 8p + \Popis [ Grek (@) -1 () M

Such expressions are useful for analytic methods that Figure 5: Pair distribution functions for hydrogen at a dgns

5 .
obtain an approximate pair distribution function from of 10?5/cc and ‘temperature of 1 keV using the Dunn-Broyles and
PP P Deutsch potentials [20]. The black curves show the HNC fonet

the pair—potentials, like the hypemeued'Chain (HNC) the symbols show the related MD results. Explicit error bers
method [54]. Other expectation values can also be re- shown at smalt, where they are larger than the symbol sizes.

placed by an integral over g(r), e.g.:

5.2. Temperature relaxation

The electron-ion temperature equilibration rate is im-
portant in ICF research because thermonuclear burn in

In the case of pressure, there isTralependent correc-  capsules containing DT plus higheopants is expected
tion. There would be a density-derivative term if the to take place at least partly out of equilibrium [1]. In
QSPs werg-dependent, but the forms considered here order to better understand temperature equilibration in

P=aT- E(Zw; Papp fdf rwgaﬁ(r) - (32

are not. general, we have used our MD capability wittitdrent
Table 1 shows the internal energy, compressibility, statistical potentials to compute the electron-ion relax-
and heat capacity for hydrogen plasmas in foufedi ~ ation time, i, for two plasmas: fully-ionized hydro-

ent states. For comparison purposes, all of the calcu-9en. and a fully ionized hydrogen plasma doped with 10
lations that are reported here exclude the correctionsatlomic percent Ar'®. For simplicity we consider tem-
for the T-dependent potentials. Data are obtained by Perature equilibration only in the absence of radiation.
MD and HNC methods, using the Dunn-Broyles statis-  1he legacy theoretical result fat; is the Landau-
tical potential for quantum €raction and the Deutsch ~ SPitzer (LS) relaxation rate [5],

term for Pauli exclusion among electrons [20]. Only

the excess values or corrections from ideal gas results i _ 8‘/Zpizize4
are shown, otherwise these weak-coupling systems are  Tei 3memc®
dominated by the ideal gas behavior. The agreement is
good for the weak coupling cases. Figure 5 shows the
pair distribution functions for one pressyaensity case.
The agreement is indicative of the weak-coupling limi
and of adequate statistical sampling for the MD. In prin- dTe Ti-Te
ciple, the EOS parameters including temperature cor- ot
rections may be calculated from these numerical results

and the analytic form of the potentials. The predicted Here, me and my are electron and ion masseg, is
static thermodynamic properties will be very similar as the ion chargeT. andT; are electron and ion temper-
well, since they are simply given by averages over these atures, ang and p; are the number densities. The
functions. In A¢; factor is the so-called Coulomb logarithm, equal

13

mec?  mc?

~3/2
} e (33)

where Y 7is the rate at which the electron temperature,
Te changes given an ion temperatufg, according to
t (assuming a single species of ions),

(34)

Tei



hydrogen, p= 102 1 Jce, T =0.8T cess is repeated several times until no transient behavior
p ¢ is evident, at which point the system with its desired

0.5 SREEE SRR : . ) .
- mass ratios and initial species temperatures is allowed
to evolve microcanonically.

Time-steps for the MD are small, consistent with the
~ 04 7 fastelectron motion and the steepness of Coulomb-like
'§ potentials at the short ranges probed in the closest en-
L counters. For theg; studies with the quantum statistical
3 03 4 potentials, we find that time-steps in the range of*+0
%“ +—+ quantum-Coulomb GLB \ 107 fs are stficient [59_61]

«— classical GLB (Dunn-Broyles) \ 1 In some cases, particularly ones in which one or more
02] 2D Do eogtesy " high-Z element is considered, we find it beneficial to
: classical GLB (improved Kelbg) use scaled ion MasseSikcaed = @ - Mphysicas Where
i L a < 1. This reduces the total simulation time since
100 100%6 V) 10000 more similarly massed species relax faster. If we as-

sume that this is a simple kinematiffect, the phys-

Figure 6:dTo/dt for H along an isochore at a density= 1075 Jcc. ical answer can then be recovered by multiplying the

MD results (magenta symbols) and result from generalizenhatc resulting simulation time by /v (see the prefactgr in
Balescu calculations of various types are also presentedést). The Eq. [33]). However, one must be careful: Changing the
electron-ion coupling i$ei = 50eV/T < 1. relative masses of the equilibrating species can alter the

extent to which each individual species participates in

screening the interparticle interactions at large disganc
to the logarithm of the ratio of maximum to minimum  This can then ect thebmax Within the Coulomb log-
impact parameters in anffective two-body scattering  arithm. For instance, in a hydrogen plasma, the pro-
event, INBmax/Pmin). IN LS, bnax is taken to be a Debye  tons respond too slowly to screen the e-p interaction in
screening length, aniohi, is set equal to the maximum  any meaningful way during temperature equilibration
of (Ze, bo), whereZe is the electron thermal de Broglie  [57]. But in an electron-positron plasma, both species
wavelength andy is the classical distance of closest would participate equally in the screening. The figure
approach (also called the Landau length) which roughly of merit here is the ratio of ion to electron plasma fre-
equalsz;e?/Te. Other more modern theories fes; ex- quencies. Since this is proportional Zo+/mep; /Mipe,
ist as well [56, 57], all prEdiCt relaxation rates which one must be especia”y cautious whgns |arge, since
are similar to LS (as long as the temperatures are highthen the scaled-mass ion can easily have a plasma fre-
enough for the individual species statistics to be clas- quency which approaches that of the electrons when it

sical), but with slightly diferent choices of Inei. We  would not otherwise do so for the physical mass ratio.
can use MD simulations to fierentiate between these

candidate theories, as well as to study physics which is 5.2.1. Hydrogen plasma
beyond the realm of weak plasma coupling, where LS Figure 6 shows the absolute value of the inittat (0)
and related approaches apply [57-59]. slope of the electron temperatur@T,/dt, as a func-
Simulations for these two-temperature problems are tion of T¢(t = 0), for 2-temperature H simulations along
initialized by first placing the particles on a regular in- thep = 10?° 1/cc isochore. For each case, we choose
terpenetrating lattice, imparting random velocities from T,(t = 0) = 0.8T¢(t = 0). Magenta squares are the
two-temperature Maxwell-Boltzmann distributions, and MD results as computed with the Dunn-Broyles statis-
then propagating them with individual Langevin ther- tical potentials [20], and with 512,000 electrons and
mostats at the species temperatures. In order to rid the512,000 protons in each simulation cell. The maxi-
simulations of unphysical initial correlations (such as mum indTe/dt at T, ~ 1 keV comes from the fact that
those imposed at the very outset), the system is alloweddTe/dt « Ty, — Te « Te, together with:bmax ~ Apebye
to evolve with the masses of theffdirent species setto  v/Te, bmin ~ de < 1/ VTe, and theT.-dependence of the
be nearly equal (so the resulting equilibration is fast). LS-prefactorin Eq. (33) (note that at these temperatures
After this initial equilibration, the masses and velogtie and forZy = 1,2, > bg, sobmin = Ae iS appropriate).
are adjusted, and the thermostat is re-applied. Relax-All other symbols indicate the results [61] of various
ation is allowed to happen again though some aspectsversions of the generalized Lenard-Balescu (GLB) ap-
are slower now with more disparate masses. This pro- proach presented in Ref. [57]. In GLB, plasma screen-
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ing and quantum dliraction are explicitly taken into ac-  Kelbg variety, introduced in 83, produce results fgr
count, so theffective Coulomb logarithm is determined  which are considerably more in line with our expecta-
without the need foad hoc cutdffs, as in LS. The con-  tions for the pure-Coulomb quantum case, at least at
nected red symbols show the results of the quantum ver-weak coupling. The connected sky-blue symbols in
sion of GLB with the inter-particle interactions taken to  Fig. 6 show classical GLB results using these potentials.

be pure Coulomb, and with static local field corrections
(LFC’s) to the plasma’s polarization set equal to zero
[61]. This should be the correct answer affmiently

Preliminary MD calculations with these potentials indi-
cate similar answers. Abovie, = 500 eV (below this,
the use of a statistical potential derived frompaér den-

weak coupling, and we note that it agrees extremely sity matrix, as reported in §83.1,3.2, is of questionable

well with the quantum limit of another modern theory,
BPS [56].

Though the MD results approach the quantum-
Coulomb GLB predictions at highis, they are system-

validity), these results are in strikingly good agreement
with quantum pure-Coulomb GLB. This suggests that
classical MD performed with the modified-Kelbg poten-

tial should be considerably closer to the quantum result

atically below them at all temperatures. We have seen than MD using the Dunn-Broyles form. We therefore

this for other densities as well. The reason for this can
be understood by considering the classidal -t 0)
version of GLB where the Coulomb potentials are re-
placed by the Dunn-Broyles potentials. The results of
this calculation (again, setting LFC:s0) are indicated

by the connected green symbols. These are in far better

agreement with the MD. Thus, we see that for this prob-
lem, classical MD with statistical potentials has its lim-
its: The replacement of the pure Coulomb interaction
by the Dunn-Broyles potential, together with the use of
classical rather than quantum dynamics, redadggdt

by roughly 10 - 15 % in this regime. This largely ex-
plains the lower ffective Inlg’'s we saw in MD results
with Dunn-Broyles, in comparison to various theoret-
ical approaches, in an earlier work on H plasmas [59].

learn that constructing statistical potentials by optimiz
ing agreement with knowstatic properties can produce
more accurate results foime-dependent properties as
well, at least in these weakly-coupled cases where we
expect GLB to be accurate for these properties.

At stronger couplings, the fierences between MD
results for H using various statistical potentials can be
smaller than the dlierences between candidate theories
of 7¢j, such as LS, BPS, and other many-body theoret-
ical approaches [62]. Here, MD with statistical poten-
tials can be a powerful tool, though we must be cau-
tious in using it in situations where the coupling is
strong enough so that the spurious appearance of clas-
sical bound states may poison the result. We refer the
reader to Ref. [59] for a discussion of stronger coupling

Though the softening of the statistical potentials at short in H, and the use of classical MD to discriminate be-
distance is meant to account for the salient features of tween various models for li; (see in particular Fig. 2

guantum difraction in a classical simulation, the true
time-dependent quantum problem iffeient, of course.
Still, it is encouraging that a&. is increased, quantum-
Coulomb and statistical potential GLB results approach
each other, indicating that MD of this sort should actu-
ally yield the proper results far; in the limit of weak-
coupling.

One somewhat surprising conclusion to be drawn
from the results of Fig. 6 is that the approximation of
static LFC's is likely a worse approximation than sim-
ply setting the LFC’s equal to zero. The connected blue
symbols represent the resultsiof— 0 GLB with static
LFC's derived from the Hypernetted Chain (HNC) ap-
proximation with these same Dunn-Broyles potentials
[61]. These are significantly further from the MD re-
sults than are the classical GLB results with LFE’®
(green symbols). It is not clear yet as to why this is
the case, nor is it known if this is also true for quantum
plasmas, where bona fide quanturfirdiction is taking
place.

The improved statistical potentials of the modified-

15

of that work).

5.2.2. Ar-doped hydrogen plasma

We next consider a plasma consisting of hydrogen
admixed with ten atomic percent fully ionized argon.
The H density is taken to ey = p, = 107 1/cc, so
the Ar'1® and electron densities apg, = 107 1/cc
andpe = 2.8 x 10?° 1/cc. The simulation cell contains
560000 electrons, 200000 protons, and 20000 Ar ions.
The initial temperatures are chosen tolRe= 4.46 keV,
andT, = Tar = 6.61 keV. In these conditions, the Ar
would indeed be fully stripped, so we neglect the com-
plication of bound states in this study. Mass-scaling for
the Ar and p ions is used:r = aar = ap = 0.01; in the
discussion that follows, we consider this systeith-
out rescaling the results to correspond to the associated
a = 1values.

Figure 7 shows MD results for the time-dependent
temperatures of this system using the Dunn-Broyles po-
tentials. We remind the reader that the results for the
physical ¢ = 1) system would correspond to divid-



(mass-scaled!) Ar-doped H;A 107 l/ce, n = 10" 1/ce
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Figure 7: Time-dependent temperatures of the (mass-draled
doped H plasma (see text) as computed by MD with the DunniBsoy
potentials. Also plotted are the results of Landau-Spitzith judi-
ciously chosen Coulomb-logarithms.

ing the time scale byr. Note first that the relaxation
is highly asymmetric; the final equilibrated temperature
is far closer taT(t = 0) than toTp(t = 0) = Tac(t = 0).

This is simply because the heat capacity of the elec-

ergy. This is then manifested in the rise in the final val-
ues of e, Ty, Tar), as compared to LS and other the-
ories which have no explicit potential energy contribu-
tions. This éect has been predicted [63] and recently
derived in a rigorous fashion from many-body theory
[64]. Modeling of this system using these and related
theoretical methods is underway [61]. We also refer the
reader to a recent MD study in which thiffext was
seen in an idealization of an §plasma [60].

The thin lines in Fig. 7 show results from LS for this
plasma, where we have chosen the arguments.@f/n
In Aear, and INdpar by appealing to physical intuition. At
these temperatures, the electron de Broglie wavelength
is considerably larger than the e-p Landau length. Thus
we takebnin(e, p) = 1e. Sincede is comparable to the
e-Ar Landau length, we again chodsgn(e Ar) = 1,
though we note that LFC’s resulting from strong e-Ar
correlations (and going beyond a simple LS picture)
could be relevant here. Fbgin(p,Ar), we take the cor-
responding p-Ar Landau length since this is consider-
ably greater than the proton de Broglie wavelength.

The choices fobpax are a bit more diicult. For e-p,
the choice obax = electron Debye length is clear; we
know that this is the proper choice for pure H [57], and
the plasma frequency of the Ar ions is similar to that of

tron subsystem is much larger than the heat capacitiesthe protons (since), o« Z/ 4/m), so their response time

of the ions, sincee is quite a bit bigger thap, andpay.
Note next that even though we have choSan = T,
initially, the Ar and proton temperatures quickly sepa-
rate. This is because: iy, is quite a bit larger thamy,
(mar = 39.6my), and 2) the e-Ar energy transfer rate,
per collision, is quite a bit higher than the e-p transfer
rate, sinceZa, > 1. Finally, notice that the resulting
equilibrated temperature is slightly higher than that pre-
dicted by LS, also shown in Fig. 7. Since LS and all
related approaches consekigetic (rather than total!)
energy, this indicates thefects of time-varyingoten-
tial energy in the simulations.

This potential energyfeect can be understood as fol-
lows: SinceZy, = 18, the Ar-Ar coupling is rather high
(even thouglpar = 0.1pp). Thus, the screened Ar sub-

should also be slow enough to prevent their participation
in screening the e-p interaction during the duration of a
typical scattering event. For p-Ar, we chodsgy = to-

tal Debye length, since the very fast electrons will surely
respond and screen and the only slightly more sluggish
p and Ar may as well (for our choice pf, anda, p and

Ar plasma frequencies are very similar, and each is 7 -
8 times lower than the electron plasma frequency). For
bmax(€, Ar), we again choose the electron Debye length,
since the e-Ar interaction time is set primarily by the
fast electron motion. The comparisons in Fig. 7 sug-
gest that these choices are reasonable. Note, however,
that LS invokes the static screening hypothesis; for each
pair of species, we are forced to choose the basic
screening length fdo,ax. GLB calculations for this sys-

system possesses a sizable Coulombic potential energytem, in which the self-consisteiynamical screening

particularly when the ions are cold. In this simulation,
the Ar start hot, so the Ar-Ar positional correlations

of the coupled 3-species plasma is considered, are cur-
rently underway [61]. It bears repeating, however, that

are less important and the resulting potential energy is even this approach, by itself, will not account for the po-

high (as in, less negative). At the end of the relaxation,

tential energy-driven shift in the final equilibrated tem-

when the Ar temperature has been driven down to just perature mentioned above.

above the initial electron temperature, the Ar-Ar posi-

In general, temperature equilibration in plasmas con-

tional correlations are more pronounced and the plasmasisting of H (or DT)+ high-Z dopants will have the fea-

lowers its potential energy. Since total energy is con-

tures seen here: asymmetric relaxation dugete pi,

served, the decrease in potential energy with simulation and shifts in the equilibrated temperature due to poten-

timet is exactly balanced by an increase in kinetic en-
16

tial energy resulting from largg-Z coupling. Our re-



sults for pure H show us how well we should expect to

predict the true quantum result for the e-p channel of

the energy transfer using classical MD with various sta-

tistical potentials. MD of this type performed on both

pure H and H+ higherZ dopants allows us to include 10—5
many-body correlations that may be particularly impor-

tant when theZ-Z coupling is high. In any real plasma

of this type, however, one must deal with the problem of
time-dependentionization in the highion, since many 1 0—6
ions will not be fully stripped throughout the course of

the equilibration. This is an active research area we are &

currently pursuing. (:;‘),

- 107”7
5.3. Dynamic structure factor and energy transport

The dynamic structure factor for a homogeneous, sta-
tionary system,
1 jwt —ik-r 1 0_8
Sulk.o) =y [cte [are 100 200 300
(35) o fs?

X {6pa(r, )opp(0,0)) ,
Figure 8: Dynamic structure factor versus frequencykfiée = 0.126
is the time-dependent generalization of Eq. (28). If the inahydrogen plasma at= 10%cc andT = 1 keV.
density fluctuations are Fourier transformedpgk, t),
then by means of the convolution theorem (neglecting a
constant term) one obtains

Sualk.0) = f At (3p, (K. opa(—k. 0))  (36)

Spectral features ir5(k,w) reveal the excitation
spectrum of the plasma. For example, the peak in Fig. 8
shows the electron plasma excitation for a hydrogen
plasma withp = 10?/cc andT = 10 keV. Thek = 0 35
limit corresponds tavy, = 4npeZ/me = 178 fst.

(This run used mass scalingy, = 100+ me, in order to
make the ion-acoustic wave period more commensurate
with the duration of the run.)

Equation (36) applies to equilibrium situations,
where the expected correlation function is not time-
dependent. In explicitly non-equilibrium problems
(such as slow temperature relaxation), it can be useful
to filter the time series so that the Fourier transform 30
is restricted to a finite time interval. For example, the
time series in the integrand of Eq. (35) can be mul-
tiplied by a low-pass Gaussian filter centered at time
t' before applying the frequency transform. This pro- 100 200 300
vides an estimate of the evolving correlation function at
timet’ that can be compared to analytic predictions, as _. _ .

. . . Figure 9: Time-resolved dynamic structure factor showsgnguc-
employed in Sec. 5.2.2. The time-resolved behavior of tuations in the long-wavelength plasma oscillatieraxis: frequency
thep = 10?%cc andT = 1 keV equilibrium plasma is  win fs~%; y-axis: time in fs from an arbitrary origin.
shown in Fig. 9, using a Gaussian with a width of 3.3
radiangfs. The time-integration of this quantity would
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approximate to the results of Fig. 8. Time-dependent are no classical bound states for the repulsive interac-
analyses of this sort will be used in future studies. tions; instead the simulation is performed for a pure
Spectral properties dB(k, w) determine the energy ~ Coulomb interaction. The MD consists of 128000 par-
transfer rates between charged particles dafedent ticles in a cubic cell ol. = 1075A. The projectile tra-
species. Density fluctuations in subsystems of ions andjectory is angled within the box to avoid overlapping the
electrons are coupled by the Coulomb interaction and wake field from adjacent, periodic replicas of the central
systematically transfer energy when they are resonantprojectile. A Langevin thermostat with 60 fs time con-
in k andw. The fluctuation-dissipation theorem relates stant is applied to the electrons to keep the temperature
the structure factor and the spontaneous thermal fluc- steady. Projectile simulations are initialized for 100 fs
tuations to the spectral representation of the density re-to allow any transients to decay; the full simulations are
sponse, Img(k, w)) or Im(e"1(k, w)) for each of the sub- 400 fs in duration. The projectile kinetic energy typ-
systems. The overall energy transfer rate is governed byically changes by a few percent over the entire simu-
the product of these quantities, integrated dvandw. lation. Stopping values are computed from the energy
Microscopically, the stopping powedE/dx, of a difference at 100 fs intervals. The solid points and error
charged projectile in a plasma depends on the instan-bars show the mean stopping and standard deviations
taneous force on the projectile from electrons and ions, from the three samplings.
due to the electric field from the charge density response  The stopping behavior shows the expected trends ver-

induced by the moving projectile ([65, Eq. 39]): SUSVproj/Vin. In the slow projectile limitdE/dx is lin-
) ear inv, analogous to a viscous drag term in Brownian
dE _ 7%¢ fdkﬂlm[ 1 ] (37) motion ([65, Eq. 42]). The analytic Bohr result for the
dx (2n)3 k2 ek, k-v)l~ OCP,
. 2 mve
Equivalently in a particle picture, dE - (Zp’ole‘”p) In( proj ) (40)
of the projectile and the forcEp; acting on it. In g 4 linearized dielectric model that applies in the high

practice, the direct MD approach for the total stopping  ye|ocity limit. Figure 10 also shows the results for other
power is to explicitly record the projectile kinetic en-  anaiytic models [66]: Bohr with the Chandrasekhar cor-
ergy,Ex(t), and trajectoryx(t); itis then straightforward  rection, and with an additional correction due to Pe-
to derivedE(x)/dx. . _ _ ter and Meyer-ter-Vehn. These approximations tend to
S(k, w) also determines the elastic and inelastic scat- o\ erestimate the peak GiE/dx. Better agreement can
tering rate,R, of, e.g., an incident photon or particle e gptained by accounting for multiple scattering pro-

beam ([65, Eq. 40]), cesses [67].
1 A characteristic wake field is shown in Fig 11, for
Rk, w(K)) = ﬁN(k)IZS(k,w(k)), (38) the same parameters as in Fig. 1@yoj/Vin lies near

the peak indE/dx in Fig. 10. There is a faint artifact
wherew(k) = k - v andV(k) is, e.g., the Coulomb in- in the density response along the central axis preceding
teraction. The processes represented by Egs. (37) andhe projectile. The density is time- and cylindrically-
(38) are central to the validation experiments discussed averaged to reduce noise, but this axis is averaged over
in 86. Note that the symmetry of the response function a comparatively small volume. The screening cloud sur-
implies this symmetry of the dynamic structure factor ~ rounding the projectile is clearly visible in black; some
plasma turbulence intrudes behind the projectile. The
Sap(—K, —w) = €"/TSg, (K, w) (39) energy transfer for fast projectiles is dominated by a
) _ o ) sharp peak immediately ahead of the projectile, which
which comes into play in interpreting x-ray Thomson corresponds to the region of strong binary scattering.
scattering spectra as in §5.3.2; Equation (39) is an ex- The magnitude of the energy transfer to the plasma falls

pression of detailed balance. off rapidly behind the projectile; the tail is made visible
by the logarithmic scale. The transfer alternates in sign

5.3.1. Charged-particle stopping due to OCP collective oscillations. This highly peaked
Figure 10 showslE/dx versus velocity for a single  distribution is a consequence of the singular Coulomb
Z = -10 projectile with the mass of a neon nucleus interaction for this model with charges of the same sign.

in a one component electron plasma at strong coupling, The usual statistical potential would soften the short
I'ee = 10. A statistical potential is not used as there range interaction to account for quantunfiidiction
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Figure 10: StoppinglE/dx versus projectile velocity from MD (solid
symbols) and analytic models (curves) forZa= -10 projectile
in an electron gas of = 10. The electron thermal velocity is
Vin (KT/me)'/2 = 138A/fs dE/dx is expressed in units of
VAr¥2KT /ap = 2.466 eVA with Ap = 2.42 A. The three models
are indistinguishable for this case.

over a thermal distribution. This thermal-average soft-
ening of non-equilibrium scattering would then under-

estimate the strong, short-range interaction and would

distort both the predicted stopping and straggling.

A comparabledE/dx result is shown for a repulsive
model of an alpha particle in Fig. 12. The OCP targetis
of the same density, but wili,e = 1. These simulaticgns
are for 64000 particles in a periodic systent.of 853A
and a Langevin thermostat with a 100 fs time constant.
The MD stopping for this lighter projectile and higher
temperature shows a larger variance representative ¢
the essentially stochastic particle scattering. Mostef th
variability in the energy loss is due to collisions at small
impact parameters. Over long times compared to the.
characteristic rate of small impact parameter collisions,
the energy loss will have a normal distribution around
the meardE/dx. This reveals the so-called straggling
that causes a monoenergetic beam to stop at a range |
depths. Again, note that théfect of these collisions on
bothdE/dx and the straggling would be underestimated
if QSPs were used.

In a neutral electron-ion plasma, there is a secona

peak in the stopping due to ion scattering. Like the elec-
tron peak, it will occur for a projectile velocity at a few

=1.114e.05
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Figure 11: OCP wake field due toZa= —10 projectile (“anti-neon”)
in an electron gas withiee = 10. The projectile is centered in the up-
per third of the field of view, moving upwards. The densityp@sse
is shown in grayscale with the wake trailing behind. The I6ghe
energy transfer field, Iif{- j¢) is shown in color, truncated at a small
value.
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Figure 12: StoppinglE/dx versus projectile velocity for a repulsive
Z = -2 projectile ("anti-helium") in an electron gas witke = 1. The

times thermal velocities of the much slower target ions. electron thermal velocity isy, = (KT/me)Y/? = 138A/fs dE/dx js
This makes the energy split, or the percentage of energyexpressed in units o/ 3r¥2KT /1p = 2.466 eVA with Ap = 2.42A.
deposited into electrons versus ions, strongly velocity
dependent. The energy transport calculation shown in
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Fig. 11 can be repeated for the forces on the ions sep-
arate from the electrons. Thus the energy split can be
qguantified in regimes where classical MD is applicable,
including strong-coupling situations.

However, stopping in partially ionized matter is com-
plicated by the presence of bound core electrons; core
dynamics are not strictly addressed by classical MD
simulations with QSPs. Bound states are prevalent in
warm dense plasmas, and they are expected even ir
hot, burning plasmas when there are hgyimpurities
present. A complete simulation of a burning neutral
plasma thus requires some quantum-corrected analog o
a statistical potential to prevent singular binding of elas
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sical point charges plus an explicit treatment of bound
electron degrees of freedom. Such improvements are
already being explored.

In the meantime, the predictions from the standard
classical MD model are of interest even before a com-
plete capability for quantum bound states is in place.
Warm dense carbon applications are particularly rele-
vant, as there are experiments in place (see §6.1) to
compare the simulations against. Two MD models for
warm dense carbon are considered here in particular.
The first is a & model. The point ions in the simu-
lation have the carbon mass but a charge»to simu-
late the doubly-ionized atom. This model approximates
the number of free electrons for the expected ioniza-
tion of a carbon plasma at=R0 eV (approximately
2.2 per carbon). Strictly, the free electrons are semi-

Figure 13: Comparison of energy loss models for carbon av2énel
2.267 gcmP. Blue diamonds: ddcMD with frozen?C ions; green
triangles: ddcMD with €* ions; black line: result from SRIM2008;
red squares: ddcMD with® plus a bound electron contribution/¢4
of SRIM result).

electron contribution, then the MD?C stopping is in
reasonable agreement, slightly below the SRIM model
(see Fig. 13). The MD results are alsfiesgted by the
use of the (softened) statistical potential for the elettro
proton interaction. If the proton, electrons, arkt @ar-
ticles are all given the same sign and their scattering is
treated with the Coulomb potential, the peak stopping
of the C* curve is almost doubled in magnitude (not
shown). Again, if the Bethe-Bloch bound state con-
tribution is added, the resulting stopping power would

degenerate for experiments at these temperatures, whilg, o slightly higher than the SRIM model, still in reason-

the MD is restricted to a non-degenerate approximation.
For fast projectiles, the proton-C potential is not of con-
cern; most of the stopping is due to the proton-electron
interaction. A more serious approximation is that the
core electrons are held rigid and do not participate in
screening or stopping at all. Accordingly, a classical
C% model is also considered. This model uses the con-
ventional C statistical potential at 20 eV, and it includes

the core electrons as classical bound states. The relia-

bility of the resultinggce(r) is not considered, nor is the
lack of discrete energy levels for the bound states.

C? MD calculations are performed for 6400G°C
atoms at a density of 2.267a® at T = 20 eV; CG*
simulations are for 24000 C atoms at the same density
and temperature. The resulting proton stopping power
is shown in Fig 13 along with the results of an SRIM
calculation [68]. (SRIM is Stopping and Range of lons
in Matter, a commercial software package.) Both MD
calculations underestimattE/dx as compared to the
SRIM model. Much of the deficit can be attributed to
the treatment of the core contribution to the overall stop-
ping. If the Bethe-Bloch model is used for the bound
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able agreement. As expected, the presence of quantum
bound electrons requires a careful account of their dy-
namic response functions and of theeetive potentials
that couple the particles in the system.

5.3.2. Scattering of a probe beam
The essence of a photon-plasma scattering experi-
ment is that a probe beam characterizedkpyand w;

is scattered into a beaky and w, with a diferential
cross section [69, 70]

(41)

d
Wg;ug o See(k1 — Ko, w1 — w)) .

At a given scattering angk the magnitudé& of ko — k1

is approximatelyk = 2k; sin(@/2) since the frequency
shift is < w. The spectrum of scattered radiation
in a fixed direction arises from the-dependence of
Sedlk, ), and shows resonant features associated with
Langmuir (plasmon) waves and ion-acoustic waves.
The asymmetry with respect e > w; versusw, < w;

that can be derived from Eq. (39) allows one to infer



the electron temperature [71]. The frequency positions polycrystalline graphite. At WMD conditions, the car-
of the resonances gives information about the electron bon atoms are partially ionized, so that both the remain-
density (fromwpe) and the ion temperature (from the ing bound electrons and the free, plasma electrons con-
ion-acoustic frequency). The frequency-integrated in- tribute to the energy loss of the protons moving through
tensity scattered in a particular direction is given by the target. Since the degree of ionization depends on
dor the temperature, the relative contributions of the bound
| oc — oc SedK) , (42) and free electrons also change with temperature. In ad-
dQ dition, the total energy loss of a proton with a given in-
so the angular distribution conveys information about cident energy depends strongly on the areal density of
the static structure factor. For a crystalline sample, the target. Therefore, in a stopping experiment with a
the angular distribution is multiplied by the factor plasma target, one needs to characterize the tempera-
| Yion €XP(K - rion)|? expressing the ion-ion correlations, ture, density and thickness of the plasma and use a tech-
which limits the scattering essentially to those direc- nique that minimizes spatial and temporal gradients. In
tions satisfying the Bragg condition. In this case it is addition, one needs to measure the energy distribution
therelative intensities of the dferent Bragg reflections  of both the incident and the transmitted ions to be able
that contairSee(K) information. When and if the crystal  to infer dE/dx.
melts, then the intensity peaks at the Bragg angles are In view of these requirements, we chose a “pump-
broadened and diminished. probe” technique for our initial experiment [75],
sketched in Fig. 14. We used an intense, energetic pro-
ton beam to heat a micron-sized solid target, and then
sent a second, independent proton beam through the
The experimental validation of our computational heated target. Both proton beams were generated by ir-
Molecular-DynamicgMonte Carlo capability is signif-  radiating thin metal foils with intense, 2 ps-long pulses
icantly complicated by the limited phase-space regime from the Titan laser at the JLF in Livermore. It has been
that is accessible to both simulations and experiments.well established over the last decade that such irradi-
The experimental preparation of a well-characterized ation produces energetic, highly collimated ion beams
high-density plasma state continues to be challenging. that propagate perpendicular to the rear surface of the
Different methods have been proposed to excite solid-irradiated foils [76]. The protons are accelerated from
density materials, including heating by laser [72] and a very thin, hydrogen-containing contaminant layer on
particle beams [73, 74]. One of the main issues is the surface of the foils. Furthermore, the ions are accel-
the evolution of the material during the heating pro- erated to their asymptotic velocities in less than 10 ps
cess, which can lead to ill-defined states of matter. In when the laser pulse duration is in the range 0.1-5 ps.
the Cimarron project, we have used twdfeient ap- This allows for rapid, volumetric heating of solid sam-
proaches in parallel to heat and probe solid-density mat- ples. In our experiment, the distance between the pro-
ter: intense, ultra-short pulses of X-rays from the Linac ton source and the heated carbon target was only 200
Coherent Light Source (LCLS), and proton beams gen- um to maximize the proton fluence on the target (hence
erated from thin foils irradiated with intense, ultra-shor the resulting temperature) and to minimize the tempo-
optical laser pulses at the Jupiter Laser Facility (JLF). ral spreading of the short- duration proton beam due to
Both of these approaches allow one to heat micron-sizedtime-of-flight (hence the heating time).
samples to temperatures greater than 10 e¥csently The temperature of the heated carbon sample, about
rapidly that the density remains that of the cold solid. 13 eV, was inferred from a measurement of the expan-
sion velocity of the target surface. We used time- and
6.1. JLF experiment space- resolved interferometry (TASRI) to measure the
The goal of this experiment was to measure the en- surface velocity [77, 78]. The temperature extracted
ergy loss,dE/dx, of protons propagating through ma- from the TASRI data was consistent with the results of
terial heated to warm dense matter (WDM) conditions, 1D hydrodynamic simulations of the proton-heated car-
which is to say, a solid in which the temperature is com- bon target. These simulations used as input the known
parable with or somewhat higher than the Fermitemper- target geometry, and the energy distribution and diver-
ature. For normal density carbon, this means a temper-gence of the heating proton beam, which we measured
ature around 20 eV. For energetic ions, the energy losson separate laser shots. The simulations showed that
of the projectile is dominated by collisions with elec- the temperature of the heated sample reached 14 eV in
trons in the target [68]. In our experiment, the targetwas about 15 ps, and then remained approximately constant
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6. Experimentsand validation
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Figure 14: Schematic of the proton energy loss experimeme. blue
arrows depict the two proton beams. The reddish rectanghesents
the carbon target. FDI is the interferometric diagnostiedu® mea-
sure the surface expansion velocity of the heated target.
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for 80 ps. During this time, there was minimal expan-
sion of the target, so that it remained at its original, solid
density.

The proton beam used to probe the heated carbon
sample was generated by irradiating a separaten2s
Au foil with a second 2ps-long laser pulse. The rela-
tive timing of the two laser pulses was adjusted so that
the probe proton beam passed through the carbon target
while it was at the maximum temperature. We mea-
sured the energy distribution of the incident and trans-
mitted protons using a recently developed, novel mag-
netic spectrometer [79]. In the experiments reported
here [75], we obtained the incident and transmitted pro-
ton spectra on dlierent laser shots, which means that
shot-to-shot variation was a major source of error for
the inferred value oflE/dx. We recorded energy spec-
tra of the protons, which passed through the heated car-
bon target, for a range of thicknesses between 2.5 and
17 um. Figure 15 shows examples of the incident and
transmitted proton spectra. A simple comparison of the
peak positions in the two spectra gave-820 eV/nm
as an estimate adE/dx at a projectile energy of 500
keV. For comparison, the value for cold polycrystalline
graphite, with a density of 1.7/gn°, is 60 eVnm [68].

Simple ionization models suggest that the degree of
ionization of carbon at 15 eV is roughy = 2.2. A
ddcMD calculation of proton stopping in a 20 eV C
plasma with two free electrons (but no bound electrons,
just a structureless*€ ion) gave 21 eYhm at 475 keV,
a value about four times smaller than the experimental
estimate. This strongly suggests that the contribution
of the bound electrons to the stopping at WDM condi-
tions is important. Indeed, as discussed in connection
with Fig. 13, adding a bound electron contribution, cal-
culated with the Bethe-Bloch model [68] for these con-
ditions, to the ddcMD result gave 85 g\Wn, which is
close to the experimental estimate. Clearly, simulation
models must include a treatment of the bound electrons
and their contribution to ion stopping in partially ion-
ized plasmas. This improvement is in progress.

6.2. LCLSexperiment

Particularly useful to excite solids are X-ray beams,
since they penetrate solid-density materials and their ab-
sorption properties are relatively well understood. Short
duration X-ray pulsesféer the additional advantage that
the material does not undergo macroscopic changes dur-
ing the heating process. Therefore, short-pulse X-ray
beams can be used to generate uniform, dense plasmas
of known energy density.

At the same time, owing to their large penetrating
power, X-ray beams can also be used to characterize
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Figure 15: Spectra of the incident (red) and transmittede(pbrotons
obtained with the magnetic ion spectrometer. The targetaZaSum

thick polycrystalline graphite foil, which was volumetity heated
by another proton beam. The two spectra were recordedfterefit
laser shots.

) . Figure 16: Bragg diraction peak of graphite excited by the LCLS
dense plasmas through X-ray scattering. Until recently, pulse.

X-ray sources have not beenfciently bright for this
application. Recently, a major breakthrough has been ) )
achieved with the advent of X-ray free-electron lasers fs, and that the graphite transforms into a plasma at the

(XFELS), that provide sub-100 fs X-ray pulses between end of the pul_se. _This experimentconstitutes the first X-
500 eV and 10 keV with pulse energies in excess of '8y characterization of X-ray-induced plasmas at sub-ps
3 mJ. These pulses can be focused to a diameter of 1fimescales. Analysis of this data is in progress.

um and smaller. The first EUV free electron lasers be-

came operational at DESY in Hamburg, Germany in 7. New directionsfor MD simulations of plasmas

2003 [80]. The Linac Coherent Light Source (LCLS) o

is the first XFEL that has produced X-ray pulses up to 7-1. Motivations

10 keV since 2009 [81]. We recently used the highly  Ideally, to simulate the hot dense plasmas discussed
penetrating, ultra-short, high-intensity LCLS radiation in this paper, we would like to solve the many-body
to isochorically excite solid-density graphite into the time-dependent Schrédinger equation (TDSE). This is
WDM regime, hot enough that we can simulate the ex- a practical impossibility so the traditional approach has
periment. During the heating pulse the sample reachedbeen to rely on MD with QSPs. MD provides an ac-
a solid density, strongly coupled plasma state. We then curate numerical solution to the many-body classical
probed the sample using Bragg and Thomson scatter-particle dynamics. It is a valuable tool for investigat-
ing from the same X-ray radiation, providing informa- ing the variety of complex non-equilibrium processes
tion about the ultrafast dynamics of the graphite elec- of hot dense matter [46, 47, 57, 82]. It handles strongly
tron and ion system. An extensive set of data with vary- coupled ions exactly and strongly coupled electrons de-
ing pulse length and fluence were collected. Figure 16 pending on the form of the potential chosen. However,
shows the Bragg reflection from single-crystal graphite, the method sfliers from two serious drawbacks that
which can be used to characterize the materials dynam-need to be solved if this method is to be used reliably
ics. The Bragg peak intensity is strongly dependent on to inform us of the accuracy of theoretical treatments of
the atomic order and ionization state of the ions. Fig- hot dense matter. First, when used for non-equilibrium
ure 17 shows simulation results of the lattice dynamics plasma simulations, QSPs may not be accurate. In other
fora 70 fs-long pulse, for pulse parameter similar to the words, within the traditional MD framework, the fidelity
ones encountered in the experiment. The simulationsto quantum mechanics is limited. Second, and perhaps
suggests that initial atomic motion occurs within tens of more serious, is that explicit electron dynamics leads to
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Figure 17: Molecular dynamics simulation of the latticeustare of
graphite exposed to an LCLS pulse.
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a time step limitation that is a small fraction of the in-
verse of the electron plasma frequency, and this is too
small to make simulating fusion plasmas feasible.

In this section we explore ideas for alternative treat-
ments. The first of these is orbital-free density func-
tional theory, in which ions are treated with classical
MD and hence can be strongly coupled. This method
works when electron dynamics may be ignored; ions in
the plasma may be weakly or strongly coupled. Hence,
it is useful for is an important but restricted subset of the
problems we are interested in. Wave packet molecular
dynamics (WPMD) fers the distinct advantage of nat-
urally incorporating quantumfiects through the equa-
tions of motion. However, the extension of these meth-
ods to include radiative and atomiffects is still an area
of research. While helping to address the QSP problem,
they do not address the time step issue discussed above.
Kinetic theory molecular dynamics (KTMD) is a recent
development and is based on leveraging the strengths
of kinetic theory and MD for hot dense matter. The
idea is to use a kinetic theory for the electrons and to
treat the ions with MD. This method treats the quantum
diffraction and interferencefects through a quantum
Wigner treatment of the electrons. The time step issue
is resolved by solving the quantum kinetic equations for
the electrons using an implicit time-stepping algorithm
that is commensurate with the ion time scale. We em-
phasize that all of these are currently active areas of re-
search. These alternatives are summarized in Table 2,
which shows the advantages and disadvantages of each
method. The remainder of this section is devoted to a
discussion of these alternatives.

7.2. Orbital-Free Density Functional Theory

When calculating phenomena that do not require
an explicit treatment of the electron dynamics, the
Born-Oppenheimer approximation may be invoked, and
the electronic structure can be calculated adiabatically
given an ion configuration at every time-step. This is of-
ten referred to as quantum molecular dynamics (QMD),
as MD is used to evolve only the ions. In almost all
cases, the electronic structure arises from the solution
of the Kohn-Sham orbitals within the context of den-
sity functional theory (DFT). The QMD method is com-
putationally very expensive in comparison to other MD
models for several reasons, including the fact that it em-
ploys many more, complex-valued functions that must
be sampled on a fine mesh in reciprocal space, over
many Brillouin zones. Worse is the enforcement of or-
bital orthonormality. However, the key limitation for
computing the properties of high energy density mate-
rials is that the number of orbitals needed becomes pro-
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Table 2: Four methods of treating electron dynamics witimoa MD code are compared

Method Strongly- | Strongly-coupled True electron | Fermi distribution Atomic physics Pauli blocking
coupled electrons dynamics function
ions
Statistical Yes Yes. Accuracy No No Yes, in static limit. Main | Somewhat. Static
potentials depends on model limitation is pair Pauli potentials
chosen approximation, and account for
independence of effective repulsion
diffraction and Pauli
OF-DFT Yes Somewhat, No Yes Somewhat, at extended | Electrons not
depending on Thomas-Fermi level dynamical
functional chosen
Wave-packet | Yes Yes Yes Somewhat, depending Yes, but severely limited| Yes, but limited by
molecular on particular choice off by Gaussiamansatz and particular choice of
dynamics antisymmetry approximate treatment | antisymmetry (e.g.,
of exchange pair versus full
determinant)
Kinetic-theory | Yes Somewhat. Yes Yes Yes. Limited by kinetic | Yes. Pauli blocking

molecular
dynamics

Moderate coupling
achieved through
non-linear
numerical solution.

Extensions possible

model used, but contains

atomic physics at least g
the Thomas-Fermi level

D

t

does not occur at
mean-field level
(WP system), but
can be included in
collision terms




hibitively large as the temperature increases. To date, obtained by minimizing the grand canonical potential,
most QMD calculations are performed at zero temper-

ature, with some in the few electron-volt range. To our Q[ng =Z:[nd + i_lf dr dr’ Ne(r)ne(r’) (45)
knowledge, the highest temperature ever simulated us- 2 Ir—r’|

ing QMD is T = 250eV, but this was a very fiicult

_ o
calculation that involved onlfour atoms [83]. - fdr [Vexd(r) = u]1e(r) + Ficlne]. - (46)

A promising alternative to the approaches mentioned \When this expression is minimized<[ne]/6ne(r) =
above is to return to the seminal theorems of DFT. In (), the resulting Euler-Lagrange equation yields the cor-
the original formulation of DFT, the basic variable is the ' rect electronic density. In this expression, the first term
densityne(r), which is a single real variable. Brillouin-  on the right is the free energy of a non-interacting elec-
zone sampling is not necessary since the density is com-tron gas, and this term is the mostfiult to deter-
puted in real space. The essential feature of what Ho- mine in OF-DFT approaches. The next term describes
henberg and Kohn proved was that this variable is, in the classical portion of the electron-electron interactio
principle, the only variable that is needed [84], however The third term includes the interaction of the electrons
the proofis only one of existence and does not reveal the with the nuclei in the molecular dynamics simulation as
explicit forms. In particular, the kinetic energy proved well as the chemical potentialand is used to ensure the
to be quite dificult to find as a functional of the density;  correct average density in the variational approach. The
it was this problem that led to the re-introduction of or-  fourth and final term is the exchange-correlation contri-
bitals, and the Kohn-Sham approach. Here, we return to pution, which includes all quantum corrections missing
the original, orbital-free DFT (OF-DFT) approach for from the other terms.
three reasons. First, there has been substantial progress Suppose we neglect the exchange-correlation contri-
in finding kinetic energy functionals. Second, employ- pution,.%,[ne], and use a form forZe[ne] from a uni-
ing the density leads to much faster computational al- form electron gas; such an approximation is expected to

gorithms, which in turn makes it possible to simulate e accurate for highly compressed matter. The uniform
larger systems for longer periods of time. Third, for gas free energy is

warm to hot dense matter, most of the subtle details of

electronic structure are reduced due to thernfi@ats, Fo ~ F1e[Ng]
and less precise functionals are needed.
——\/E dr |nZ1/2(n) 2[ n) 47)
Generally speaking, the equations to be solved are - n2psI2 200 g 32
given by V2
with ne(r) = Wﬁ/z(’l), (48)
%Vztp =ne(r) — Zzio‘(r -Ri), (43) where as befor@ = 1/T is the inverse temperature,
T -
I

n = Pu is the degeneracy parameter, afigln) is the

Bi = -2V, g_Q Y (44) usual Fermi integral of ordgy defined by
N L= [ T (49)
pun) = 0 1+ex-n’

where we have denoted the position of iffeion as

R; with nuclear charge; and the electric potential as
¢. The entirety of the modeling is contained in accu-
rately expressing the grand canonical poterilfhe].
The principal objective of this task will then be to de-
velop a form of this potential which describes all the
key physical processes while still maintaining a mini-
mal computational complexity.

Note that, as long as the electron density is nearly uni-
form, this scheme applies to materialsarfy nuclear
composition (e.g., mixtures) aty temperature. In fact,
this is nothing more than the Thomas-Fermi model cast
in terms of the language of DFT, which has been ap-
plied to hot dense systems since the seminal work of
Feynman, Metropolis, and Teller at Los Alamos dur-
ing the Manhattan Project [86]. Their method can be

Shortly after Hohenberg and Kohn developed DFT applied here such that the resulting electron density is
for zero-temperature systems [84], Mermin extended connected with many, potentiallyfi&rent ions that are
the basic theorems to finite temperature [85]. In particu- evolved using molecular dynamics. Such a method has
lar, these results show that the correct electron density isbeen used to simulate dense matter from= 0.1eV
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to T = 5000eV [87]. It is important to note that this
method is an all-electron, finite temperature method.

The Thomas-Fermi approximation, while enjoying
many successes, has several well-known shortcoming
such as predicting singularities in the density at ion
centers, which is not only unphysical but also leads
to numerical instabilities [87, 88]. We propose to im-
prove upon Eq. (47) by allowing for slowly-varying in-
homogeneities. This can be done by including a finite-
temperature gradient correction which yields the proper
linear response in the long-wavelength limit [89]

Kinetic energy contribution (Ryd)

1 15 2 25 3
I = density parameter

Fe ~ Fre[nel + FoclNe, VNl 50
€ TF[ e] GC[ e, [Vl ] ( ) Figure 18: Comparison of kinetic energy functional appmtadions
1 d (dp 2 with self-consistent DFT data for H in jellium [90]Kprr — DFT,
where Fec = - fdr — | 7= ]IVne™.  (51) Kir — pure linear responseitrw — Thomas-Fermi (TF) with
24 dn \ dne . .
Weizséacker term anlltr r — TF corrected for exact linear response.
The density paramete = g /ap.

This correction changes the resulting Euler-Lagrange
equation, which minimizes the functional, from an ex- )
plicit expression of the electron density to a nonlinear /- \Wave Packet Molecular Dynamics

partial diferential equation. While this adds some com-  In general, the time-dependent Schrédinger equation
putational complexity, it resolves the singular densities (TDSE) is very dificult to solve for a many-body sys-
and thus improves numerical stability. A further correc- tem. However, we can reduce the computational com-
tion could be made to yield thexact linear response to  plexity via the use of a time-dependent variational prin-
all orders. One way to do this is to calculate the po- ciple (TDVP) [91-93]. To use this method, one must
larization function of the existing model, subtract this first define an action to vary. There are several possi-
inherently inaccurate contributiorffaand then add on  ble choices [94]. Here, we discuss the stationary action
the exact linear response through the correct polariza-principle
tion function [90]

6[dt<zﬁ'ih%—ﬁ’w>=0. (54)
Fe = F1E+ Foc + FAR, (52)
_ , N , The wave function is then written in terms of a finite
where Zir =f dr dr’ ne(r )X moger — 1) number of time-dependent variational parameters.
- f dr dr’ ne(r)x&(r = 1) (53) [y = 1Z(t)) = 1z (), Z(V), - - - . Zn(D))- (55)

One then varies with respect I to derive the equa-
This again complicates the Euler-Lagrange equations, tions of motion. Such equations of motion may require
although computationally it only involves additional matrix inversion to solve, lead to too many equations,
convolutions already being calculated. In Fig. 18, re- andor have non-analytic terms. This motivates one to
sults from Ref. [90] are presented showing that system- seek simple forms fag) that are still able to model the
atic improvements to the kinetic energy functional yield requisite physics.
more accurate results when compared to full DFT cal-  Heller [95] was the first to recognize that restricting
culations. Here, all approximations are made at zero- the dynamics of a wave function to the Hilbert space
temperature, wher&per is the DFT dataK g repre- consisting of Gaussian wave packets is a powerful semi-
sents a functionainly containing linear responskyry classical approximation. It is powerful in the sense that
is Thomas-Fermi (TF) with the so-called Weizsécker it leads to easy to evolve wave functions and easy to in-
correction, which is functionally similar t6#gc, and terpret results. The semiclassical approximation here is
finally Kte g is TF corrected for exact linear response different than the usual expansion. Instead, the clas-
and gradient corrections as in Eq. (52). Note thatsas  sical approximation is identified with particles having
goes to zeroi.e., the limit of high densitiesKtg g pro- exact positions and momenta, so this semiclassical ap-
duces the most accurate results. proximation is that particles have approximate positions
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and momenta (the centers of the Gaussian wave func-wherer;; = ri —rj, rig = ri =Ry, i3 = R = Ry,

tion in its position and momentum representations, re- v;; = \/(yiz + y]?), my is the mass of iod, andm is
spectively) but do not violate the Heisenberg uncertainty the electron mass. The indiceg, |, J range over all
principle. For quadratic potentials, this approximation the particles. The trajectories from these equations of
is exact. Errors become large when the width of the motion are softened in a similar fashion to a statistical
packets is large or when third and higher derivatives of potential. One dference is that the softening parame-
the potential become significant. ter (y;) is itself dynamic instead of the static thermal de

Wave Packet Molecular Dynamics (WPMD) is a sim- Broglie wavelength used in statistical potentials. How-
ple way to implement quantum mechanics in a molec- ever, this comparison is not exactly a fair one. The po-
ular dynamics code. WPMD extends the point particle sitions and momenta mearfldirent things (expectation
dynamics to a dynamics of the Gaussian wave packetvalues versus values in an ensemble used to sample the
position, momentum, and width. It incorporates un- quantum partition function) and the softening arises due
certainty in position and momentum consistent with to these dierent interpretations.
the Heisenberg uncertainty principle and few-body ex-  The right hand side of Eq. (59) has twdfdirent terms
change fects can be added while interferendieets which may give opposite behaviors. The first term rep-
are still poorly treated. resents a repulsion from having zero width. If the po-

The first application of WPMD to plasma physics sition is known very well, the momentum must be, by
was by Klakow, Toefier, and Reinhard [96, 97] and re- the Heisenberg uncertainty principle, very uncertain. So
views are given by Littlejohn [98] and by Feldmeier and the particle can headfin any direction, e.g. spread.
Schnack [91]. Such simulations were and are important This is the only term that exists for a free particle and
because theyfter a dynamic replacement of quantum so it must eventually spread. Depending on temperature
statistical potentials as well as a model that can be usedand density, the second term may or may not be strong
to interpret molecular dynamics in a fully quantum me- enough to keep the widths from diverging.
chanical way.

'_I'he equations of motior_1 within the Ggussian re- -4 Kinetic Theory Molecular Dynamics
stricted wave packet formalism of WPMD yield:

As discussed earlier, a limiting aspect of MD as ap-
plied to electron-proton plasmas is the restriction of the
time step to electron collision time scales. For plasmas
in the HDR regime, this means fractions of a fs. lon
electron collisions happen on a much longer time scale
(factor of my/mg) and thermonuclear burn on an even
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o _ _ longer time scale of nanoseconds. Therefore, trying to
&;’r” [erf( \/gn_,] _hi \/Ee‘&lzj/zhz} run simulations of dense burning plasmas becomes im-
LY 2yi) vy Vr practical. It was recognized early on in the develop-
(57) ment of MD that the large discrepancy between the elec-

tron and ion time scales could be used to the computa-
tional physicists advantage. In both Born-Oppenheimer
MD [99] and Car-Parrinello MD [99, 100], it is as-
sumed that the electrons adapt rapidly to the changes
in the ion positions and momenta. In the case of Born-
Oppenheimer MD, the electron configuration is always
assumed to be in a ground state which is computed from
(58) a stationary Schrodinger equation. Electron “dynamics”
is a result of the #ect of the classical ion dynamics on
the electrons. In other words, the ground state electron
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aration of energy scales. The beauty of their approach
is that the electron-ion plasma can be mapped onto an



equivalent classical description consisting of dynamic contains length scales that are in general much shorter
ions and electron orbitals. than those typically associated with the methods men-

The philosophy behind KTMD is based on several tioned above. The ideal method will be one that com-
observations about HDR plasmas. First, the electrons bines the simplicity and computationdlieiency of the
are non-degenerate and weakly coupled. Second, theclassical methods with thefficiency and accuracy to
ions can be weakly or strongly coupled. KTMD at- handle multiple length and timescales. It is well known
tempts to take advantage of these properties along withthat the Vlasov-Poisson system is dissipative [108, 109],
the observations that: (1) MD is very good at mov- meaning that the quantum initial distribution will relax
ing classical particles around and computes their cor- toward a Maxwellian distribution in time. Therefore,
relations exactly (2) Kinetic theory is well developed we must invoke a collisional term tafectively drive
for weakly coupled plasmas. Hence, the approach the distribution function toward some quantum equilib-
of KTMD is to describe the electron dynamics fully rium distribution. The subtlety here is that this equilib-
with a kinetic equation and leave the ion dynamics to rium is time-dependent; each self-consistent time step
MD. HDR plasmas exhibit quantumffects at short  taken within the KTMD method will lead to fferent
distances and classical screening behavior at long dis-equilibrium distribution. A starting point for this is a
tances. Therefore, the starting point for a kinetic theory simple Bhatnagar-Gross-Krook (BGK)-type [110] col-
description of the electron dynamics will be the Wigner lision model.
equation with exchangefects ignored [101-103].

The process for deriving the relevant KTMD equa-
tions is straightforward although the calculations them- 8- Comparisons of different methods for single elec-
selves are lengthy. For this paper, a description of the  tron dynamics
derivation is given; a separate longer paper will pro-
vide more details. The approach is based on starting It is impossible to solve the TDSE for millions of
with a Quantum Liouville (Wigner) equation fdde+ N, particles in a real plasma, but an accurate solution is
particles in a plasma wheid, refers to the number of ~ possible for a few electron and protons. Therefore it
electrons andN, refers to the number of protons. This is useful to make a comparison between various meth-
equation is used to construct the reduced Wigner dis- 0ds of interest (including the workhorse QSP) and the
tribution function forN, protons. A closure scheme is €xact quantum mechanical solution for few body colli-
required and it is assumed that higher order correlation sions. Here we consider (binary) electron-proton scat-
functions can be written as a symmetrized sum of one- tering and a single electron scattering from many pro-
particle Wigner functions and pair correlation functions. tons. Such comparisons can inspire improvements in
This quantum Liouville description of the ion dynamics the approximate methods, as well as help us to under-
is used as the basis for the MD simulation and it de- stand which quantumfiects dominate the physical sys-

scribes the pushing of classical particles witfeetive ~ tems of interest. Besides QSPs, our comparisons in-
forces [104]. The electron kinetic equation is derived Volve: (1) machine-accuracy (called “exact”) solutions
from a 5ing|e partic|e density generated by the SOFT method; (2) a method (WCD)

operator. In the limit of weak coupling, a closed set that preserves the initial properties of the wavefunc-
of equations for the one particle electron Wigner func- tion, but does notinclude interference; and (3) a method
tion and the electron-electron and electron-proton pair (WPMD) that employs simple Gaussian wavefunctions.
correlation functions can be derived. This was done by The first two of these are described below; WPMD was
Guernsey [_‘]_04] described in 87.3.

The numerical aspects of solving the KTMD equa-
tions are non-trivial. The approach we are taking is 8.1. Exact TDSE: split operator fourier transform
to first start with the quantum Vlasov form coupled to method (SOFT)
the Poisson equation. In this system, the pair corre-

lations vanish. There are a vast number of classical FOF Single-electron problems, the Schrédinger equa-

methods for discretizing the quantum Vlasov system, HON1S

such as particle-in-cell (PIC) [105], particle-particle- P P

particle-mesh (P3M) [106], and the Eulerian (gridded iﬁaw(r) = (ﬁ + V(r))w(r), (60)
Vlasov) [107] methods. However, the primary con-

cern in the choice of a specific method for tackling the V(r)=- Z &, (61)
KTMD equations is that the quantum interaction term I = Rl
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where the sum is over all fixed scattering centers of
chargeqnm, located at position&,,. Equation (60) is
solved by repeated application of the propagation opera-
tor for a time step\t, approximated by the split operator
[111-115]

I At
Z%At} exp[ \% 5 }

(62)
(where agairh = 1 for convenience). The Split Opera-
tor Fourier Transform (SOFT) method takes advantage
of this factorization by applying the first operator in po-

2o

U(tt+At) ~ exp[—v >

sition space, the second in momentum space, and the

third in position space because these operators are, re
spectively, diagonal in these spaces. The basis chang
from coordinate space to momentum space and vice
versa is €ected by forward and backward Fast Fourier
Transforms on an equidistant grid.

The complex wave functiow (t) at timet is repre-
sented on the grid

ok =Too+ k-AX, k=1,...,128

tion [116]

PP = éfw(wg)w(r_;)éws

(= ro)? _(p- Po)’
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|

(64)

—(27T0'r0'p)3 ex {

where the uncertainty relation givesop = 1/2.

This six-dimensional Gaussian distribution in coor-
inate and momentum space was used for the Monte-
Carlo initialization of a distribution of point parti-

d

e(:Ies whose particle density reproduces the quantum-

mechanical density [117]. To perform Wigner Classical
Dynamics [118], these particles were propagated due to
Newton’s equations of motion using the Velocity-Verlet
method [119]. A complication arises when an electronic
particle experiences a close encounter with a proton -
the gradient of the Coulomb potential then becomes di-
vergent. To solve this problem, the analytic solution of
the Kepler problem for this two-body problem is applied
to position and momentum, which are then updated ac-

wherea enumerates the three Cartesian directions. Here cording to the gradients of the Coulomb potential due to

o = —4A, ry = rzg = —5A, andAx = 10/128A,
small enough to correctly represent the momenta of the
wave function at the energy range given (1 keV and be-
low). The time step chosen ist = 10~*fs to accurately
resolve the electron dynamics.

8.2. Wigner classical dynamics (WCD)

In this approach to improving the description of par-
ticle dynamics, one replaces a single point particle by
a distribution of point particles whose density in phase

space reproduces the quantum density. A classical prop-

agation of these particles can then illuminate whether
the width of the wave function is the dominant quantum
effect in the process studied.

Given a three-dimensional Gaussian wave function as
an initial single particle state (in this subsection we set
h=1),

(r—ro)?
4o?

-3/4 ,
Yo (r) = (2707) exp(— +ipo- (r - ro))
(63)
with initial positionr and initial momentunm, the ini-
tial phase-space density is given by the Wigner distribu-
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the remaining protons.

Using an adaptive time step to converge the energy
drift, this mixed method performs faster than standard
integrators. It is dierent from existing variable reg-
ularization schemes popular in astrophysics [120-125]
in that it does not require keeping track of variable and
time transformations or alignment of time steps between
the regularized and the remaining part of the system.
It can thus be treated as a black box method that can
be added to existing dynamics codes easily. The al-
gorithm used for the solution of the Kepler problem
and its implementation are based on a vectorial solution
[126]. The mixed analytic solution with numerical up-
date method is described and its performance analyzed
in detail in a separate publication [127]. The test parti-
cles in the WCD method do not interact, a feature that
offers obvious parallelizability.

8.3. Binary Scattering

We first consider an electron scattered by its interac-
tion with a (fixed) proton, and compare in detail various
classical and quantum trajectory results. In the classical
view, the electron samples the interaction only at points
on the trajectory, while in the quantum view, it continu-
ally samples the Coulomb interaction over an extended
region (the wavepacket).



We show in Fig. 19 electron trajectories given by the
Dunn-Broyles QSP for three fiierent plasma tempera-

tures. These are compared, in each case, with classical

trajectories for a pure Coulomb potential and with vari-
ous quantum expectation values of the electron position.
In all cases, the initial total electron energy is 9.2 eV,
and for SOFT, WCM and WPMD the initial condition

is given by Eq. (63), with widthr, = 0.05A, position

x = =1 Bohr, and impact parametgin increasing mul-
tiples of 0.2 Bohr.

It can be seen that, as the QSPs are constructed to at
tempt to emulate quantum dynamics, all QSP trajecto-
ries curve less sharply around the proton (indicated by
the black cross) than do their classical, pure Coulomb
counterparts. However, the QSP trajectories curve more
sharply than the quantum mechanical trajectories. Fig-
ure 19 shows that the agreement of the QSP trajectory
with the exact result (SOFT) is best at the lowest tem-
perature, 4.6 eV. Even for this temperature the agree-
ment is fairly good only at the largest impact parameter
and the final time, and not as good at intermediate time.
The QSP trajectory with the medium impact parameter
agrees well with SOFT in the scattering region but not
at long times.

This demonstrates that it is not possible to match
qualitative quantum behavior with the QSP point par-

ticles, as agreement of the trajectories depends on the

temperatureas well as the impact parameter. In the
QSP model the particles have no width but the inter-
action potential is softened. The other methods, by con-
trast, feature finite-radius particles that interact wité t
Coulomb potential. Figure 19 shows that these meth-
ods give trajectories that agree well with the exact result
despite having no adjustable temperature parameter.
Overall, we note that for what should be the same in-
teraction (same initial conditions), fterent results are
obtained with QSPs. This is due to the problematic as-
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sumption that a temperature can be associated with a

single electron. In an MD simulation, ftierent energy
electrons interact with nuclei through the same poten-
tial corresponding to an average temperature. However,
electrons of the same energy that are propagated in MD
simulations of diferent temperature interact with the
nuclei through dferent potentials, which leads to dif-
ferent outcomes of the scattering events.

The exact quantum trajectory follows a softened tra-
jectory with respect to the single particle classical resul
This is due to the electron sampling the potential over
the range of its width, and is qualitatively similar to the
QSP result. However, the reason for the softening of the
trajectory in the statistical potential is distinct fronath
in the quantum mechanical case. The positions and mo-
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Figure 19: Comparison of trajectories for a single elecsoattering
from a single proton. Shown are expectation values of théipons
evaluated using exact quantum mechanical SOFT (solid ap@yox-
imate quantum mechanical WPMD (dashed green), and quantum-
classical WCD (dashed blue) methods, versus positionsaskidal
single particles in the Coulomb (dotted blue) and Dunn-Br®e\sta-
tistical potentials (dashed black). The electron energd.2seV and
the results shown correspond to QSP at plasma tempera@ies\],
9.2 eV, and 4.6 eV. It can be seen that agreement of QSP tragst
with those of quantum methods depends on the temperaturelleasy
the impact parameter.



menta in QSP dynamics are not real positions and mo-
menta. These virtual dynamics are constructed solely
to get the right statistics in thermal equilibrium. There-
fore, individual trajectories should not be used to make
any statements about observables, such as radiation pro
duced by the acceleration of electrons.

We now compare SOFT, WPMD, and WCD. For
these comparatively low energies, WCD yields trajec-
tories following those from the exact SOFT method
more closely than the ones from WPMD. This is be-
cause the electrons in the current WPMD approach are
represented by isotropic Gaussian wave packets. Hence
they can neither deform into anisotropic densities, nor
bifurcate into bound and unbound components. Both
of these degrees of freedom are open for the multiple

T
0.0as
initial density
L] L]

-4 4 6

pamdes represgntmg the electron Qensny in the WCD Figure 20: Contour plots of initial density, integrated otkee z co-
approach, allowing for the observed improvement of the ordinate. Coordinate axes are in Angstroms. Contours aerdat
trajectories. Thisis in spite of WCD using only classical percentages of the maximum density found atd, 2x o and 3x o

equations of motion, indicating a dominance of width
effects (sampling of dierent portions of the potential)
when switching from classical to quantum dynamics.

8.4. Quantum Pinball

To gain a better understanding of the dominant quan-
tum dfects in electron dynamics in a plasma, scatter-
ing of a single electron from a disordered array of pro-
tons was simulated using SOFT, WPMD, and WCD.
This test is diferent from electron-proton scattering in
that interference may occur between components of the
wave function scatteredfodifferent scattering centers.
Quantum cross sections are therefore not additive, po-
tentially resulting in deviations from a classical predic-
tion. -

A cluster of 125 protons, spanning&b x 5A", cor-
responding to a plasma density of

Pplasma= 1'&_3 =10 cm3

was placed centrally at the coordinate origin. Electronic

from the center of a Gaussian. Small black dots represeialipbsi-
tions of particles for the Wigner Classical Dynamics (WCDgthod.
Proton coordinates are shown as black dots, larger for psattoser
to thez = 0 plane in which the initial wave function is centered.

initial momenta were chosen so thﬁ/Zme is 1 keV,
250 eV, and 62.5 eV, respectively, for the three cases
compared here. The accuracy of WPMD and WCD can
be quantified by comparing the densities evolved with
the diferent models at some later time.

Figure 21 shows as small gray dots the point particles
propagated with the WCD method and as blue outlines
the number density collected in 64uadratic bins cov-
ering the quantum grid. (Each bin covers@uantum
grid cells.) For illustration purposes, particles showa ar
from a simulation using 5= 15625 particles. Contour
lines and quantitative measures shown in Table 3 are de-
rived from simulations using®7= 117649 particles. A
maximum allowed energy drift of.22- 1072 eV/fs for
each particle was used as the basis for the adaptive time
step simulations with a smallest allowed time step of

wave packets were placed at the boundary and launchedl0 s (!).

with a range of initial momenta typical of plasma en-
ergies. Resulting electron densities were compared to
ascertain the accuracy of the methods employed.

Our test is to give each method the same initial wave
function, shown in Fig. 20 and given in Eq. (63), where
ro = (-24A,0,0) is th(—g initial expectation value of
the position,o = 0.3458A the initial width, andpy =
(po, 0, 0) the initial expectation value of the momentum.
The initial width o was chosen from a Gaussian fit to
the 1s state of the hydrogen atom, so that the initial
wave packet can be thought of as a free electron result-
ing from the recent ionization of a hydrogen atom. The

32

Figure 21 also shows contour maps of SOFT prob-
ability densitieso (r) = ¢* (r) ¢ (r) (red outlines) after
passing through the proton cluster for the three initial
kinetic energies. Contours are drawn at percentages of
the maximum density found at the single, double, and
triple width of a Gaussian distribution. Snapshots were
taken at diferent times owing to the varying velocities
with which the wave packet progresses, such that the
electron density has just left the proton cluster at that
time.

Because the energies are so high, scattering is gener-
ally weak in the examples considered. For that reason,
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Figure 21: Contour plots of the probability densities gibgrdifferent
methods after passing through the proton cluster, integraver the
z coordinate. Coordinates iA. SOFT (red contour lines), WPMD
(green contour lines), WCD (small particles and blue contmes),
and no interaction (dark contour lines). Protons (blaclsgathown
as larger for protons closer to the@ plane.
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To[eV] method A method B Q,°
1000 SOFT WPMD 0.90
1000 SOFT WCD 0.9¥0.01
1000 WPMD WCD 0.980.01
250 SOFT WPMD 0.97
250 SOFT WCD 0.910.01
250 WPMD WCD 0.960.01
62.5 SOFT WPMD 0.89
62.5 SOFT WCD 0.860.01
62.5 WPMD WCD 0.75%0.01

Table 3: Agreement of final densities shown in Fig. 21 quadtifiy

the normalized overlaﬁ;‘lB, eg. (65) for three diierent initial kinetic
energies and three methods discussed in this section.

it is relatively easy for a model to reproduce the exact
dynamics. In order to understand exactly what part of
the dynamics is nontrivial, we have also included the
evolution of a free wave packet (zero potential). This is
shown as the gray contours in Fig. 21. A comparison
with the analytic density shows that the protons act on
the wave packet through acceleration, deformation, and
suppression of dispersion.

Fig. 21 shows final densities resulting from WPMD
simulation as green contours.

Agreement between the final densities shown in Fig.
21 for methods A and B can be evaluated using the nor-
malized overlap term

feteta
T \%
Qg = 172 iz (69
(ngdr) -[ngdr)
v Y

whereTy is the initial kinetic energy angdy is the final
density for method X. For perfect agreement between
the densities predicted by methods A and B,

Qe =1 (66)

Densities were used as the basis of our comparison
throughout, as the wave function’s phase is unavailable
in the WCD method.

Table 3 shows normalized overlap values
Q1S—OOFT—WPMD for the three initial kinetic energies
used. All are at or above 0.9, which means that WPMD
not only reproduces the SOFT trajectory, but also
the wave packet's time-dependent dispersion for the
scattering problem at multiple Coulomb potentials.
Even in the lowest kinetic energy case, which results in
a more strongly deformed final SOFT quantum density,
the isotropic WPMD packet covers the main features



of the SOFT density, confirming the WPMD method’s than that for the non-zero potential, showing that the
viability for electron scattering at a proton cluster. nuclei help to confine the packet. We emphasize that

As can be seen in table 3, agreement of the final den- these are very short evolutions (tens of attoseconds), and
sity between SOFT and WCD systematically declines so we cannot draw any conclusion about the large-time
with lowered initial kinetic energy. This is due to fate of the widths (whether they diverge or eventually
decrease).

The widths for each of the Cartesian directions are
shown in Fig. 22 for anisotropic wave packets. Note
that the black lines in all three graphs represent the same
time-dependence of the free electron width and that the
time scales of the graphstir. SOFT generally predicts
the packets to be less confined in the direction of mo-
tion (x coordinate) than in thg andz directions. WCD
The Wigner particle density method can be systemati- has a tendency to the opposite, except in the lowest en-
cally improved by ergy case (62.5 eV). Figure 21 reveals, however, that in
this case a considerable fraction of the test particles are
bound by the proton first encountered and remain there
(in the exact quantum calculation, some density is left
there too, but to a much smaller extent). Owing to their
large distance from the final position, these bound par-
ticles contribute disproportionately to tkecomponent
of the width, hiding the tendency of the unbound part to
However, classical dynamics of the Wigner particle den- have a smaller width in the direction, which becomes
sity already yields good agreement with the SOFT re- apparentto the eye in Fig. 21. It must be concluded that
sult, so that it can be concluded that the dominant quan- interference ffects, which make SOFT widths smaller
tum efect for an electron scatterindgf@ proton cluster  in general than WCD widths, act more strongly in the
is due to the width of the wave packet rather than inter- andz direction. Common to all graphs of Fig. 22 is that
ference fects. the width of the free packet is an upper bound, demon-

Since one of the controversial issues about WPMD strating that the netfBect of the proton cluster is that of
is the spreading of the widths, it is useful to compare focusing the packet.
the evolution of the width against SOFT. We also in- Several important properties of a real plasma are ig-
clude WCD to show how much of the spreading is due nored in our quantum pinball test problems, and in the
to the uncertainty in position and momentum. These future we plan to address the following points:
comparisons are shown in Fig. 22. Due to thffed
ence in one-dimensional and three-dimensional widths,
o =/ V3. For all three thermal velocities of the initial
wave packet shown (1keV, 250eV, and 62.5eV), WPMD
actuallyunderestimates the width while WCD overesti-
mates it. Interference between the scattered waves is
important for confining the wave packet and thfgeet
is overestimated by WPMD owing to its restriction to
an isotropic shape, and underestimated owing to the ab-
sence of phase information in WCD. However, as shown
by the overlaps given in Table 3, thisfect does not
dominate at short timescales. In fact, close inspection of
Fig. 21 shows that WPMD reproduces the large density
portions of the SOFT wave function very well, while ig- 9. Cimarron prospectus
noring deformations at the lowest-density contour level.

The long tails of the SOFT density have, however, a The MD simulation capability provides insight into
large weight in the calculation of the widih. Also the behavior of hot dense plasmas. We are now just be-
shown in the plots is the evolution of the free wave ginning to mine the potential of this tool for investigat-
packet. The width in this evolution is always greater ing a wide range of physical processes in plasmas. We
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1. Theincreased total time of the simulation until the
density leaves the proton cluster allowing the sim-
ulation to accrue deviation and

2. A systematic overestimation by the WCD method
as to what fraction of the wave function is bound
compared to SOFT, as can be seen in the blue con-
tour lines on the left hand’s side presentin Fig. 21.

1. extending the equations of motion for the particles
to sample forces at certain distances away from
their position [128] or

2. associating a phase with each particle that correctly
accounts for quantum superposition in the binning
process underlying the contour levels.

1. The scattering centers are all positively charged.
This may bias the wave packet toward being more
confined compared to what exists in a neutral
plasma.

2. A real plasma is usually macroscopic and so it is
unlikely that an electron will encounter its bound-
aries. This can be modeled by introducing a peri-
odic potential and periodic boundary conditions on
the sides of our box of protons.

3. Degeneracyfeects may also be important, espe-
cially at lower energies.



have presented new results for two of these, electron-ion
coupling and charged patrticle stopping. Future work
will be directed toward evaluating thermal conductivi-

12 ———=oF7 o ties, _d'ffufsivilty ano! EQS. Ln all\(/ljgitiqn, rl)lqsma r\r;\ilxtur_elzls
11} —— WCDo are ripe for investigation by simulations. We wi
P et \?V%FDT(;’Xy | be investigating the properties of plasmas where a high-
------ SOFT 4, Z ion component is strongly coupled while the proton-
£ 097 e WSI\E/)ISZ | proton component is weakly coupled. This will provide

s 08 — 5no intgracﬁon 1 an interesting test of the assumptions underlying current

< theoretical treatments of plasma mixtures.

2 Another area of application for the MD simulation ca-
pability presented here is integrated, or multi-physics,
problems. Unfortunately, this class of problems typi-
cally is beset by disparate time scales. Future directions

0.3 ‘ ‘ : ‘ : will adapt the traditional MD concept by making use of
0 0005 001 _0'015 0020025 003  he advantages of kinetic theory and molecular dynam-
time [fs] ics. Of particular interest is the ability to perform fun-
p3/2me = 250 eV damental MD simulations of hot dense plasmas under-
[ p—Ter o ‘ going thermonuclear burn. Low- and highmixtures
1.1 | —— WGCD o, again will provide an interesting test of th&ects of
'H %%FDTQTV screening on reaction rates and heating of the plasmas

e ool i \?V%FDsz due to .charged particle energy de.po-sition. - .

= os|l — WPMDZcj . Moving past the quantum statistical potentials will

° - G no interaction be a key area of research that will impact both the

g 07 component and integral physics topics discussed above.

= 06 KTMD may provide the first exact potentials useful for

05 non-equilibrium plasmas. WPMD continues tbew in-
04 teresting possibilities, especially in light of the facath
' we can test the validity of its underlying assumptions
03 0 0.01 002 003 004  o0os through comparisons with exact, time-dependent quan-
' " time [fS]. ' ' tum mechanics.
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Figure 22: Width evolution given by fierent methods after passing
through the proton cluster: SOFT (red lines), WPMD (greeed),

WCD (blue lines), and no interaction (black lines). References
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